Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 1;26(9):2086–2091. doi: 10.1093/nar/26.9.2086

(1,4,7-trimethyl-1,4,7-triazacyclononane)iron (III)-mediated cleavage of DNA: detection of selected protein-DNA interactions.

A Ehmann 1, D Chafin 1, K M Lee 1, J J Hayes 1
PMCID: PMC147541  PMID: 9547264

Abstract

A new reagent for the oxidative cleavage of DNA, (1,4,7-trimethyl-1, 4,7-triazacyclononane)iron(III) chloride was recently introduced. We have determined the utility of this reagent for detecting protein-DNA interactions within two types of complexes. Interestingly, we find that the rates of DNA cleavage by this reagent are differentially affected by the two classes of protein-DNA interactons studied. We find that the rate of DNA cleavage by this reagent is relatively unaffected by the non-sequence-specific histone-DNA interactions within a nucleosome complex. Conversely, a clear footprint pattern is obtained with two different DNA sequence-specific protein-DNA complexes. The results suggest that (1,4,7-trimethyl-1,4,7-triazacyclononane)iron(III) chloride will be a useful reagent to probe trans -acting-factor-DNA interactions within a chromatin environment. Differences between these two types of protein-DNA interactions, which might account for this observation, are discussed.

Full Text

The Full Text of this article is available as a PDF (197.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arents G., Moudrianakis E. N. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10489–10493. doi: 10.1073/pnas.90.22.10489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dixon W. J., Hayes J. J., Levin J. R., Weidner M. F., Dombroski B. A., Tullius T. D. Hydroxyl radical footprinting. Methods Enzymol. 1991;208:380–413. doi: 10.1016/0076-6879(91)08021-9. [DOI] [PubMed] [Google Scholar]
  3. Hayes J. J. Chemical probes of DNA structure in chromatin. Chem Biol. 1995 Mar;2(3):127–135. doi: 10.1016/1074-5521(95)90066-7. [DOI] [PubMed] [Google Scholar]
  4. Hayes J. J., Lee K. M. In vitro reconstitution and analysis of mononucleosomes containing defined DNAs and proteins. Methods. 1997 May;12(1):2–9. doi: 10.1006/meth.1997.0441. [DOI] [PubMed] [Google Scholar]
  5. Hayes J. J., Tullius T. D. Structure of the TFIIIA-5 S DNA complex. J Mol Biol. 1992 Sep 20;227(2):407–417. doi: 10.1016/0022-2836(92)90897-s. [DOI] [PubMed] [Google Scholar]
  6. Hayes J. J., Tullius T. D. The missing nucleoside experiment: a new technique to study recognition of DNA by protein. Biochemistry. 1989 Nov 28;28(24):9521–9527. doi: 10.1021/bi00450a041. [DOI] [PubMed] [Google Scholar]
  7. Hayes J. J., Tullius T. D., Wolffe A. P. The structure of DNA in a nucleosome. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7405–7409. doi: 10.1073/pnas.87.19.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  9. McGhee J. D., Felsenfeld G. Reaction of nucleosome DNA with dimethyl sulfate. Proc Natl Acad Sci U S A. 1979 May;76(5):2133–2137. doi: 10.1073/pnas.76.5.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McGhee J. D., Felsenfeld G. The number of charge-charge interactions stabilizing the ends of nucleosome DNA. Nucleic Acids Res. 1980 Jun 25;8(12):2751–2769. doi: 10.1093/nar/8.12.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nightingale K., Dimitrov S., Reeves R., Wolffe A. P. Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J. 1996 Feb 1;15(3):548–561. [PMC free article] [PubMed] [Google Scholar]
  12. Papp P. P., Chattoraj D. K. Missing-base and ethylation interference footprinting of P1 plasmid replication initiator. Nucleic Acids Res. 1994 Jan 25;22(2):152–157. doi: 10.1093/nar/22.2.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Papp P. P., Chattoraj D. K., Schneider T. D. Information analysis of sequences that bind the replication initiator RepA. J Mol Biol. 1993 Sep 20;233(2):219–230. doi: 10.1006/jmbi.1993.1501. [DOI] [PubMed] [Google Scholar]
  14. Record M. T., Jr, Lohman M. L., De Haseth P. Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976 Oct 25;107(2):145–158. doi: 10.1016/s0022-2836(76)80023-x. [DOI] [PubMed] [Google Scholar]
  15. Roberts M. S., Fragoso G., Hager G. L. Nucleosomes reconstituted in vitro on mouse mammary tumor virus B region DNA occupy multiple translational and rotational frames. Biochemistry. 1995 Sep 26;34(38):12470–12480. doi: 10.1021/bi00038a046. [DOI] [PubMed] [Google Scholar]
  16. Tullius T. D. DNA footprinting with hydroxyl radical. Nature. 1988 Apr 14;332(6165):663–664. doi: 10.1038/332663a0. [DOI] [PubMed] [Google Scholar]
  17. Tullius T. D., Dombroski B. A. Hydroxyl radical "footprinting": high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5469–5473. doi: 10.1073/pnas.83.15.5469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tullius T. D. Physical studies of protein-DNA complexes by footprinting. Annu Rev Biophys Biophys Chem. 1989;18:213–237. doi: 10.1146/annurev.bb.18.060189.001241. [DOI] [PubMed] [Google Scholar]
  19. Vinson C. R., Sigler P. B., McKnight S. L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science. 1989 Nov 17;246(4932):911–916. doi: 10.1126/science.2683088. [DOI] [PubMed] [Google Scholar]
  20. Wickner S., Hoskins J., McKenney K. Monomerization of RepA dimers by heat shock proteins activates binding to DNA replication origin. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7903–7907. doi: 10.1073/pnas.88.18.7903. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES