Abstract
The normal human FMR1 gene contains a genetically stable (CGG) n trinucleotide repeat which usually carries interspersed AGG triplets. An increase in repeat number and the loss of interspersions results in array instability, predominantly expansion, leading to FMR1 gene silencing. Instability is directly related to the length of the uninterrupted (CGG) n repeat and is widely assumed to be related to an increased propensity to form G-rich secondary structures which lead to expansion through replication slippage. In order to investigate this we have cloned human FMR1 arrays with internal structures representing the normal, intermediate and unstable states. In one replicative orientation, arrays show a length-dependent instability, deletions occurring in a polar manner. With longer arrays these extend into the FMR1 5'-flanking DNA, terminating at either of two short CGG triplet arrays. The orientation-dependent instability suggests that secondary structure forms in the G-rich lagging strand template, resolution of which results in intra-array deletion. These data provide direct in vivo evidence for a G-rich lagging strand secondary structure which is believed to be involved in the process of triplet expansion in humans.
Full Text
The Full Text of this article is available as a PDF (170.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell M. V., Hirst M. C., Nakahori Y., MacKinnon R. N., Roche A., Flint T. J., Jacobs P. A., Tommerup N., Tranebjaerg L., Froster-Iskenius U. Physical mapping across the fragile X: hypermethylation and clinical expression of the fragile X syndrome. Cell. 1991 Feb 22;64(4):861–866. doi: 10.1016/0092-8674(91)90514-y. [DOI] [PubMed] [Google Scholar]
- Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
- Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H., Hunter K., Stanton V. P., Thirion J. P., Hudson T. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992 Feb 21;68(4):799–808. doi: 10.1016/0092-8674(92)90154-5. [DOI] [PubMed] [Google Scholar]
- Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8;271(5254):1423–1427. doi: 10.1126/science.271.5254.1423. [DOI] [PubMed] [Google Scholar]
- Chen X., Mariappan S. V., Catasti P., Ratliff R., Moyzis R. K., Laayoun A., Smith S. S., Bradbury E. M., Gupta G. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5199–5203. doi: 10.1073/pnas.92.11.5199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devys D., Biancalana V., Rousseau F., Boué J., Mandel J. L., Oberlé I. Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. 1992 Apr 15-May 1Am J Med Genet. 43(1-2):208–216. doi: 10.1002/ajmg.1320430134. [DOI] [PubMed] [Google Scholar]
- Eichler E. E., Holden J. J., Popovich B. W., Reiss A. L., Snow K., Thibodeau S. N., Richards C. S., Ward P. A., Nelson D. L. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet. 1994 Sep;8(1):88–94. doi: 10.1038/ng0994-88. [DOI] [PubMed] [Google Scholar]
- Fisch G. S., Snow K., Thibodeau S. N., Chalifaux M., Holden J. J., Nelson D. L., Howard-Peebles P. N., Maddalena A. The fragile X premutation in carriers and its effect on mutation size in offspring. Am J Hum Genet. 1995 May;56(5):1147–1155. [PMC free article] [PubMed] [Google Scholar]
- Fry M., Loeb L. A. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4950–4954. doi: 10.1073/pnas.91.11.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu Y. H., Kuhl D. P., Pizzuti A., Pieretti M., Sutcliffe J. S., Richards S., Verkerk A. J., Holden J. J., Fenwick R. G., Jr, Warren S. T. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991 Dec 20;67(6):1047–1058. doi: 10.1016/0092-8674(91)90283-5. [DOI] [PubMed] [Google Scholar]
- Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
- Hansen R. S., Gartler S. M., Scott C. R., Chen S. H., Laird C. D. Methylation analysis of CGG sites in the CpG island of the human FMR1 gene. Hum Mol Genet. 1992 Nov;1(8):571–578. doi: 10.1093/hmg/1.8.571. [DOI] [PubMed] [Google Scholar]
- Hirst M. C., Arinami T., Laird C. D. Sequence analysis of long FMR1 arrays in the Japanese population: insights into the generation of long (CGG)n tracts. Hum Genet. 1997 Dec;101(2):214–218. doi: 10.1007/s004390050618. [DOI] [PubMed] [Google Scholar]
- Hirst M. C. FMR1 triplet arrays: paying the price for perfection. J Med Genet. 1995 Oct;32(10):761–763. doi: 10.1136/jmg.32.10.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirst M. C., Grewal P. K., Davies K. E. Precursor arrays for triplet repeat expansion at the fragile X locus. Hum Mol Genet. 1994 Sep;3(9):1553–1560. doi: 10.1093/hmg/3.9.1553. [DOI] [PubMed] [Google Scholar]
- Hunter N., Chambers S. R., Louis E. J., Borts R. H. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 1996 Apr 1;15(7):1726–1733. [PMC free article] [PubMed] [Google Scholar]
- Ji J., Clegg N. J., Peterson K. R., Jackson A. L., Laird C. D., Loeb L. A. In vitro expansion of GGC:GCC repeats: identification of the preferred strand of expansion. Nucleic Acids Res. 1996 Jul 15;24(14):2835–2840. doi: 10.1093/nar/24.14.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones C., Slijepcevic P., Marsh S., Baker E., Langdon W. Y., Richards R. I., Tunnacliffe A. Physical linkage of the fragile site FRA11B and a Jacobsen syndrome chromosome deletion breakpoint in 11q23.3. Hum Mol Genet. 1994 Dec;3(12):2123–2130. doi: 10.1093/hmg/3.12.2123. [DOI] [PubMed] [Google Scholar]
- Kang S., Jaworski A., Ohshima K., Wells R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet. 1995 Jun;10(2):213–218. doi: 10.1038/ng0695-213. [DOI] [PubMed] [Google Scholar]
- Kettani A., Kumar R. A., Patel D. J. Solution structure of a DNA quadruplex containing the fragile X syndrome triplet repeat. J Mol Biol. 1995 Dec 8;254(4):638–656. doi: 10.1006/jmbi.1995.0644. [DOI] [PubMed] [Google Scholar]
- Knight S. J., Flannery A. V., Hirst M. C., Campbell L., Christodoulou Z., Phelps S. R., Pointon J., Middleton-Price H. R., Barnicoat A., Pembrey M. E. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell. 1993 Jul 16;74(1):127–134. doi: 10.1016/0092-8674(93)90300-f. [DOI] [PubMed] [Google Scholar]
- Kunst C. B., Warren S. T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell. 1994 Jun 17;77(6):853–861. doi: 10.1016/0092-8674(94)90134-1. [DOI] [PubMed] [Google Scholar]
- Kuryavyi V. V., Jovin T. M. Triad-DNA: a model for trinucleotide repeats. Nat Genet. 1995 Apr;9(4):339–341. doi: 10.1038/ng0495-339. [DOI] [PubMed] [Google Scholar]
- Macpherson J. N., Curtis G., Crolla J. A., Dennis N., Migeon B., Grewal P. K., Hirst M. C., Davies K. E., Jacobs P. A. Unusual (CGG)n expansion and recombination in a family with fragile X and DiGeorge syndrome. J Med Genet. 1995 Mar;32(3):236–239. doi: 10.1136/jmg.32.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malter H. E., Iber J. C., Willemsen R., de Graaff E., Tarleton J. C., Leisti J., Warren S. T., Oostra B. A. Characterization of the full fragile X syndrome mutation in fetal gametes. Nat Genet. 1997 Feb;15(2):165–169. doi: 10.1038/ng0297-165. [DOI] [PubMed] [Google Scholar]
- Mandel J. L. Human genetics. Breaking the rule of three. Nature. 1997 Apr 24;386(6627):767–769. doi: 10.1038/386767a0. [DOI] [PubMed] [Google Scholar]
- McMurray C. T. Mechanisms of DNA expansion. Chromosoma. 1995 Oct;104(1):2–13. doi: 10.1007/BF00352220. [DOI] [PubMed] [Google Scholar]
- Mitchell J. E., Newbury S. F., McClellan J. A. Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to fragile X and related human genetic diseases. Nucleic Acids Res. 1995 Jun 11;23(11):1876–1881. doi: 10.1093/nar/23.11.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mornet E., Chateau C., Hirst M. C., Thepot F., Taillandier A., Cibois O., Serre J. L. Analysis of germline variation at the FMR1 CGG repeat shows variation in the normal-premutated borderline range. Hum Mol Genet. 1996 Jun;5(6):821–825. doi: 10.1093/hmg/5.6.821. [DOI] [PubMed] [Google Scholar]
- Nancarrow J. K., Holman K., Mangelsdorf M., Hori T., Denton M., Sutherland G. R., Richards R. I. Molecular basis of p(CCG)n repeat instability at the FRA16A fragile site locus. Hum Mol Genet. 1995 Mar;4(3):367–372. doi: 10.1093/hmg/4.3.367. [DOI] [PubMed] [Google Scholar]
- Petruska J., Arnheim N., Goodman M. F. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res. 1996 Jun 1;24(11):1992–1998. doi: 10.1093/nar/24.11.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pieretti M., Zhang F. P., Fu Y. H., Warren S. T., Oostra B. A., Caskey C. T., Nelson D. L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991 Aug 23;66(4):817–822. doi: 10.1016/0092-8674(91)90125-i. [DOI] [PubMed] [Google Scholar]
- Reyniers E., Vits L., De Boulle K., Van Roy B., Van Velzen D., de Graaff E., Verkerk A. J., Jorens H. Z., Darby J. K., Oostra B. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nat Genet. 1993 Jun;4(2):143–146. doi: 10.1038/ng0693-143. [DOI] [PubMed] [Google Scholar]
- Ritchie R. J., Knight S. J., Hirst M. C., Grewal P. K., Bobrow M., Cross G. S., Davies K. E. The cloning of FRAXF: trinucleotide repeat expansion and methylation at a third fragile site in distal Xqter. Hum Mol Genet. 1994 Dec;3(12):2115–2121. doi: 10.1093/hmg/3.12.2115. [DOI] [PubMed] [Google Scholar]
- Samadashwily G. M., Raca G., Mirkin S. M. Trinucleotide repeats affect DNA replication in vivo. Nat Genet. 1997 Nov;17(3):298–304. doi: 10.1038/ng1197-298. [DOI] [PubMed] [Google Scholar]
- Sandberg G., Schalling M. Effect of in vitro promoter methylation and CGG repeat expansion on FMR-1 expression. Nucleic Acids Res. 1997 Jul 15;25(14):2883–2887. doi: 10.1093/nar/25.14.2883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu M., Gellibolian R., Oostra B. A., Wells R. D. Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. J Mol Biol. 1996 May 17;258(4):614–626. doi: 10.1006/jmbi.1996.0273. [DOI] [PubMed] [Google Scholar]
- Smeets H. J., Smits A. P., Verheij C. E., Theelen J. P., Willemsen R., van de Burgt I., Hoogeveen A. T., Oosterwijk J. C., Oostra B. A. Normal phenotype in two brothers with a full FMR1 mutation. Hum Mol Genet. 1995 Nov;4(11):2103–2108. doi: 10.1093/hmg/4.11.2103. [DOI] [PubMed] [Google Scholar]
- Snow K., Tester D. J., Kruckeberg K. E., Schaid D. J., Thibodeau S. N. Sequence analysis of the fragile X trinucleotide repeat: implications for the origin of the fragile X mutation. Hum Mol Genet. 1994 Sep;3(9):1543–1551. doi: 10.1093/hmg/3.9.1543. [DOI] [PubMed] [Google Scholar]
- Sutcliffe J. S., Nelson D. L., Zhang F., Pieretti M., Caskey C. T., Saxe D., Warren S. T. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992 Sep;1(6):397–400. doi: 10.1093/hmg/1.6.397. [DOI] [PubMed] [Google Scholar]
- Sutherland G. R., Richards R. I. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3636–3641. doi: 10.1073/pnas.92.9.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usdin K., Woodford K. J. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res. 1995 Oct 25;23(20):4202–4209. doi: 10.1093/nar/23.20.4202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren S. T. The expanding world of trinucleotide repeats. Science. 1996 Mar 8;271(5254):1374–1375. doi: 10.1126/science.271.5254.1374. [DOI] [PubMed] [Google Scholar]
- Wöhrle D., Hennig I., Vogel W., Steinbach P. Mitotic stability of fragile X mutations in differentiated cells indicates early post-conceptional trinucleotide repeat expansion. Nat Genet. 1993 Jun;4(2):140–142. doi: 10.1038/ng0693-140. [DOI] [PubMed] [Google Scholar]
- Wöhrle D., Hirst M. C., Kennerknecht I., Davies K. E., Steinbach P. Genotype mosaicism in fragile X fetal tissues. Hum Genet. 1992 Apr;89(1):114–116. doi: 10.1007/BF00207057. [DOI] [PubMed] [Google Scholar]
- Yu A., Dill J., Wirth S. S., Huang G., Lee V. H., Haworth I. S., Mitas M. The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation. Nucleic Acids Res. 1995 Jul 25;23(14):2706–2714. doi: 10.1093/nar/23.14.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu S., Pritchard M., Kremer E., Lynch M., Nancarrow J., Baker E., Holman K., Mulley J. C., Warren S. T., Schlessinger D. Fragile X genotype characterized by an unstable region of DNA. Science. 1991 May 24;252(5009):1179–1181. doi: 10.1126/science.252.5009.1179. [DOI] [PubMed] [Google Scholar]
- de Graaff E., Rouillard P., Willems P. J., Smits A. P., Rousseau F., Oostra B. A. Hotspot for deletions in the CGG repeat region of FMR1 in fragile X patients. Hum Mol Genet. 1995 Jan;4(1):45–49. doi: 10.1093/hmg/4.1.45. [DOI] [PubMed] [Google Scholar]