Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 15;26(10):2255–2264. doi: 10.1093/nar/26.10.2255

Identifying 5-methylcytosine and related modifications in DNA genomes.

T Rein 1, M L DePamphilis 1, H Zorbas 1
PMCID: PMC147551  PMID: 9580672

Abstract

Intense interest in the biological roles of DNA methylation, particularly in eukaryotes, has produced at least eight different methods for identifying 5-methylcytosine and related modifications in DNA genomes. However, the utility of each method depends not only on its simplicity but on its specificity, resolution, sensitivity and potential artifacts. Since these parameters affect the interpretation of data, they should be considered in any application. Therefore, we have outlined the principles and applications of each method, quantitatively evaluated their specificity,resolution and sensitivity, identified potential artifacts and suggested solutions, and discussed a paradox in the distribution of m5C in mammalian genomes that illustrates how methodological limitations can affect interpretation of data. Hopefully, the information and analysis provided here will guide new investigators entering this exciting field.

Full Text

The Full Text of this article is available as a PDF (182.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achwal C. W., Chandra H. S. A sensitive immunochemical method for detecting 5mC in DNA fragments. FEBS Lett. 1982 Dec 27;150(2):469–472. doi: 10.1016/0014-5793(82)80791-6. [DOI] [PubMed] [Google Scholar]
  2. Achwal C. W., Ganguly P., Chandra H. S. Estimation of the amount of 5-methylcytosine in Drosophila melanogaster DNA by amplified ELISA and photoacoustic spectroscopy. EMBO J. 1984 Feb;3(2):263–266. doi: 10.1002/j.1460-2075.1984.tb01795.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Achwal C. W., Iyer C. A., Chandra H. S. Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Lett. 1983 Jul 25;158(2):353–358. doi: 10.1016/0014-5793(83)80612-7. [DOI] [PubMed] [Google Scholar]
  4. Annan R. S., Kresbach G. M., Giese R. W., Vouros P. Trace detection of modified DNA bases via moving-belt liquid chromatography-mass spectrometry using electrophoric derivatization and negative chemical ionization. J Chromatogr. 1989 Mar 31;465(2):285–296. doi: 10.1016/s0021-9673(01)92666-4. [DOI] [PubMed] [Google Scholar]
  5. Barbin A., Montpellier C., Kokalj-Vokac N., Gibaud A., Niveleau A., Malfoy B., Dutrillaux B., Bourgeois C. A. New sites of methylcytosine-rich DNA detected on metaphase chromosomes. Hum Genet. 1994 Dec;94(6):684–692. doi: 10.1007/BF00206964. [DOI] [PubMed] [Google Scholar]
  6. Berkner K. L., Folk W. R. The effects of substituted pyrimidines in DNAs on cleavage by sequence-specific endonucleases. J Biol Chem. 1979 Apr 10;254(7):2551–2560. [PubMed] [Google Scholar]
  7. Bestor T. H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992 Jul;11(7):2611–2617. doi: 10.1002/j.1460-2075.1992.tb05326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bestor T. H. DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):179–187. doi: 10.1098/rstb.1990.0002. [DOI] [PubMed] [Google Scholar]
  9. Bird A. The essentials of DNA methylation. Cell. 1992 Jul 10;70(1):5–8. doi: 10.1016/0092-8674(92)90526-i. [DOI] [PubMed] [Google Scholar]
  10. Bull J. H., Wootton J. C. Heavily methylated amplified DNA in transformants of Neurospora crassa. Nature. 1984 Aug 23;310(5979):701–704. doi: 10.1038/310701a0. [DOI] [PubMed] [Google Scholar]
  11. Butkus V., Klimasauskas S., Kersulyte D., Vaitkevicius D., Lebionka A., Janulaitis A. Investigation of restriction-modification enzymes from M. varians RFL19 with a new type of specificity toward modification of substrate. Nucleic Acids Res. 1985 Aug 26;13(16):5727–5746. doi: 10.1093/nar/13.16.5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Butkus V., Klimasauskas S., Petrauskiene L., Maneliene Z., Lebionka A., Janulaitis A. Interaction of AluI, Cfr6I and PvuII restriction-modification enzymes with substrates containing either N4-methylcytosine or 5-methylcytosine. Biochim Biophys Acta. 1987 Aug 25;909(3):201–207. doi: 10.1016/0167-4781(87)90078-9. [DOI] [PubMed] [Google Scholar]
  13. Cedar H. DNA methylation and gene activity. Cell. 1988 Apr 8;53(1):3–4. doi: 10.1016/0092-8674(88)90479-5. [DOI] [PubMed] [Google Scholar]
  14. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Clark S. J., Harrison J., Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995 May;10(1):20–27. doi: 10.1038/ng0595-20. [DOI] [PubMed] [Google Scholar]
  16. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Diviacco S., Norio P., Zentilin L., Menzo S., Clementi M., Biamonti G., Riva S., Falaschi A., Giacca M. A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates. Gene. 1992 Dec 15;122(2):313–320. doi: 10.1016/0378-1119(92)90220-j. [DOI] [PubMed] [Google Scholar]
  18. Doerfler W., Schubbert R., Heller H., Kämmer C., Hilger-Eversheim K., Knoblauch M., Remus R. Integration of foreign DNA and its consequences in mammalian systems. Trends Biotechnol. 1997 Aug;15(8):297–301. doi: 10.1016/S0167-7799(97)01061-5. [DOI] [PubMed] [Google Scholar]
  19. Ehrlich M., Gama-Sosa M. A., Carreira L. H., Ljungdahl L. G., Kuo K. C., Gehrke C. W. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 1985 Feb 25;13(4):1399–1412. doi: 10.1093/nar/13.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Eick D., Fritz H. J., Doerfler W. Quantitative determination of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal Biochem. 1983 Nov;135(1):165–171. doi: 10.1016/0003-2697(83)90746-7. [DOI] [PubMed] [Google Scholar]
  21. Feil R., Charlton J., Bird A. P., Walter J., Reik W. Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 1994 Feb 25;22(4):695–696. doi: 10.1093/nar/22.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fritzsche E., Hayatsu H., Igloi G. L., Iida S., Kössel H. The use of permanganate as a sequencing reagent for identification of 5-methylcytosine residues in DNA. Nucleic Acids Res. 1987 Jul 24;15(14):5517–5528. doi: 10.1093/nar/15.14.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Frommer M., McDonald L. E., Millar D. S., Collis C. M., Watt F., Grigg G. W., Molloy P. L., Paul C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Frostesjö L., Holm I., Grahn B., Page A. W., Bestor T. H., Heby O. Interference with DNA methyltransferase activity and genome methylation during F9 teratocarcinoma stem cell differentiation induced by polyamine depletion. J Biol Chem. 1997 Feb 14;272(7):4359–4366. doi: 10.1074/jbc.272.7.4359. [DOI] [PubMed] [Google Scholar]
  25. Garrity P. A., Wold B. J. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1021–1025. doi: 10.1073/pnas.89.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gommers-Ampt J., Lutgerink J., Borst P. A novel DNA nucleotide in Trypanosoma brucei only present in the mammalian phase of the life-cycle. Nucleic Acids Res. 1991 Apr 25;19(8):1745–1751. doi: 10.1093/nar/19.8.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gonzalgo M. L., Jones P. A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997 Jun 15;25(12):2529–2531. doi: 10.1093/nar/25.12.2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Grafstrom R. H., Yuan R., Hamilton D. L. The characteristics of DNA methylation in an in vitro DNA synthesizing system from mouse fibroblasts. Nucleic Acids Res. 1985 Apr 25;13(8):2827–2842. doi: 10.1093/nar/13.8.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Grimaldi K. A., McAdam S. R., Souhami R. L., Hartley J. A. DNA damage by anti-cancer agents resolved at the nucleotide level of a single copy gene: evidence for a novel binding site for cisplatin in cells. Nucleic Acids Res. 1994 Jun 25;22(12):2311–2317. doi: 10.1093/nar/22.12.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gruenbaum Y., Cedar H., Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature. 1982 Feb 18;295(5850):620–622. doi: 10.1038/295620a0. [DOI] [PubMed] [Google Scholar]
  31. Gruenbaum Y., Naveh-Many T., Cedar H., Razin A. Sequence specificity of methylation in higher plant DNA. Nature. 1981 Aug 27;292(5826):860–862. doi: 10.1038/292860a0. [DOI] [PubMed] [Google Scholar]
  32. Gruenbaum Y., Stein R., Cedar H., Razin A. Methylation of CpG sequences in eukaryotic DNA. FEBS Lett. 1981 Feb 9;124(1):67–71. doi: 10.1016/0014-5793(81)80055-5. [DOI] [PubMed] [Google Scholar]
  33. Gruenbaum Y., Szyf M., Cedar H., Razin A. Methylation of replicating and post-replicated mouse L-cell DNA. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4919–4921. doi: 10.1073/pnas.80.16.4919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hayashizaki Y., Hirotsune S., Okazaki Y., Hatada I., Shibata H., Kawai J., Hirose K., Watanabe S., Fushiki S., Wada S. Restriction landmark genomic scanning method and its various applications. Electrophoresis. 1993 Apr;14(4):251–258. doi: 10.1002/elps.1150140145. [DOI] [PubMed] [Google Scholar]
  35. Hayatsu H., Shiragami M. Reaction of bisulfite with the 5-hydroxymethyl group in pyrimidines and in phage DNAs. Biochemistry. 1979 Feb 20;18(4):632–637. doi: 10.1021/bi00571a013. [DOI] [PubMed] [Google Scholar]
  36. Hayatsu H., Ukita T. The selective degradation of pyrimidines in nucleic acids by permanganate oxidation. Biochem Biophys Res Commun. 1967 Nov 30;29(4):556–561. doi: 10.1016/0006-291x(67)90521-9. [DOI] [PubMed] [Google Scholar]
  37. Herman J. G., Graff J. R., Myöhänen S., Nelkin B. D., Baylin S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hornstra I. K., Yang T. P. In vivo footprinting and genomic sequencing by ligation-mediated PCR. Anal Biochem. 1993 Sep;213(2):179–193. doi: 10.1006/abio.1993.1407. [DOI] [PubMed] [Google Scholar]
  39. Hubrich-Kühner K., Buhk H. J., Wagner H., Kröger H., Simon D. Non-C-G recognition sequences of DNA cytosine-5-methyltransferase from rat liver. Biochem Biophys Res Commun. 1989 May 15;160(3):1175–1182. doi: 10.1016/s0006-291x(89)80127-5. [DOI] [PubMed] [Google Scholar]
  40. Janosi L., Yonemitsu H., Hong H., Kaji A. Molecular cloning and expression of a novel hydroxymethylcytosine-specific restriction enzyme (PvuRts1I) modulated by glucosylation of DNA. J Mol Biol. 1994 Sep 9;242(1):45–61. doi: 10.1006/jmbi.1994.1556. [DOI] [PubMed] [Google Scholar]
  41. Jost J. P., Bruhat A. The formation of DNA methylation patterns and the silencing of genes. Prog Nucleic Acid Res Mol Biol. 1997;57:217–248. doi: 10.1016/s0079-6603(08)60282-2. [DOI] [PubMed] [Google Scholar]
  42. Klimasauskas S., Steponaviciene D., Maneliene Z., Petrusyte M., Butkus V., Janulaitis A. M.Smal is an N4-methylcytosine specific DNA-methylase. Nucleic Acids Res. 1990 Nov 25;18(22):6607–6609. doi: 10.1093/nar/18.22.6607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kuromitsu J., Yamashita H., Kataoka H., Takahara T., Muramatsu M., Sekine T., Okamoto N., Furuichi Y., Hayashizaki Y. A unique downregulation of h2-calponin gene expression in Down syndrome: a possible attenuation mechanism for fetal survival by methylation at the CpG island in the trisomic chromosome 21. Mol Cell Biol. 1997 Feb;17(2):707–712. doi: 10.1128/mcb.17.2.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  45. McClelland M., Nelson M., Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1994 Sep;22(17):3640–3659. doi: 10.1093/nar/22.17.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. McGrew M. J., Rosenthal N. Quantitation of genomic methylation using ligation-mediated PCR. Biotechniques. 1993 Oct;15(4):722–729. [PubMed] [Google Scholar]
  47. Mirkovitch J., Darnell J. E., Jr Rapid in vivo footprinting technique identifies proteins bound to the TTR gene in the mouse liver. Genes Dev. 1991 Jan;5(1):83–93. doi: 10.1101/gad.5.1.83. [DOI] [PubMed] [Google Scholar]
  48. Myöhänen S., Wahlfors J., Jänne J. Automated fluorescent genomic sequencing as applied to the methylation analysis of the human ornithine decarboxylase gene. DNA Seq. 1994;5(1):1–8. doi: 10.3109/10425179409039698. [DOI] [PubMed] [Google Scholar]
  49. Nyce J., Liu L., Jones P. A. Variable effects of DNA-synthesis inhibitors upon DNA methylation in mammalian cells. Nucleic Acids Res. 1986 May 27;14(10):4353–4367. doi: 10.1093/nar/14.10.4353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ohmori H., Tomizawa J. I., Maxam A. M. Detection of 5-methylcytosine in DNA sequences. Nucleic Acids Res. 1978 May;5(5):1479–1485. doi: 10.1093/nar/5.5.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Olek A., Oswald J., Walter J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 1996 Dec 15;24(24):5064–5066. doi: 10.1093/nar/24.24.5064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Patel C. V., Gopinathan K. P. Determination of trace amounts of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal Biochem. 1987 Jul;164(1):164–169. doi: 10.1016/0003-2697(87)90381-2. [DOI] [PubMed] [Google Scholar]
  53. Paul C. L., Clark S. J. Cytosine methylation: quantitation by automated genomic sequencing and GENESCAN analysis. Biotechniques. 1996 Jul;21(1):126–133. doi: 10.2144/96211rr04. [DOI] [PubMed] [Google Scholar]
  54. Pfeifer G. P., Drouin R., Riggs A. D., Holmquist G. P. In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1374–1378. doi: 10.1073/pnas.88.4.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Pfeifer G. P., Singer-Sam J., Riggs A. D. Analysis of methylation and chromatin structure. Methods Enzymol. 1993;225:567–583. doi: 10.1016/0076-6879(93)25037-3. [DOI] [PubMed] [Google Scholar]
  56. Pfeifer G. P., Steigerwald S. D., Mueller P. R., Wold B., Riggs A. D. Genomic sequencing and methylation analysis by ligation mediated PCR. Science. 1989 Nov 10;246(4931):810–813. doi: 10.1126/science.2814502. [DOI] [PubMed] [Google Scholar]
  57. Pieler T., Digweed M., Bartsch M., Erdmann V. A. Comparative structural analysis of cytoplasmic and chloroplastic 5S rRNA from spinach. Nucleic Acids Res. 1983 Feb 11;11(3):591–604. doi: 10.1093/nar/11.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Plass C., Shibata H., Kalcheva I., Mullins L., Kotelevtseva N., Mullins J., Kato R., Sasaki H., Hirotsune S., Okazaki Y. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat Genet. 1996 Sep;14(1):106–109. doi: 10.1038/ng0996-106. [DOI] [PubMed] [Google Scholar]
  59. Rae P. M., Steele R. E. Modified bases in the DNAs of unicellular eukaryotes: an examination of distributions and possible roles, with emphasis on hydroxymethyluracil in dinoflagellates. Biosystems. 1978 Apr;10(1-2):37–53. doi: 10.1016/0303-2647(78)90027-8. [DOI] [PubMed] [Google Scholar]
  60. Raizis A. M., Schmitt F., Jost J. P. A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Anal Biochem. 1995 Mar 20;226(1):161–166. doi: 10.1006/abio.1995.1204. [DOI] [PubMed] [Google Scholar]
  61. Razin A., Cedar H. Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2725–2728. doi: 10.1073/pnas.74.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Razin A., Kafri T. DNA methylation from embryo to adult. Prog Nucleic Acid Res Mol Biol. 1994;48:53–81. doi: 10.1016/s0079-6603(08)60853-3. [DOI] [PubMed] [Google Scholar]
  63. Reeben M., Prydz H. An improved method for detection of 5-methylcytosine by PCR-based genomic sequencing. Biotechniques. 1994 Mar;16(3):416–417. [PubMed] [Google Scholar]
  64. Rein T., Natale D. A., Gärtner U., Niggemann M., DePamphilis M. L., Zorbas H. Absence of an unusual "densely methylated island" at the hamster dhfr ori-beta. J Biol Chem. 1997 Apr 11;272(15):10021–10029. doi: 10.1074/jbc.272.15.10021. [DOI] [PubMed] [Google Scholar]
  65. Rein T., Zorbas H., DePamphilis M. L. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides. Mol Cell Biol. 1997 Jan;17(1):416–426. doi: 10.1128/mcb.17.1.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Roy P. H., Weissbach A. DNA methylase from HeLa cell nuclei. Nucleic Acids Res. 1975 Oct;2(10):1669–1684. doi: 10.1093/nar/2.10.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Russell D. W., Hirata R. K. The detection of extremely rare DNA modifications. Methylation in dam- and hsd- Escherichia coli strains. J Biol Chem. 1989 Jun 25;264(18):10787–10794. [PubMed] [Google Scholar]
  68. Sadri R., Hornsby P. J. Rapid analysis of DNA methylation using new restriction enzyme sites created by bisulfite modification. Nucleic Acids Res. 1996 Dec 15;24(24):5058–5059. doi: 10.1093/nar/24.24.5058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Saluz H. P., Jost J. P. In vivo DNA footprinting by linear amplification. Methods Mol Biol. 1994;31:317–329. doi: 10.1385/0-89603-258-2:317. [DOI] [PubMed] [Google Scholar]
  70. Saluz H., Jost J. P. A simple high-resolution procedure to study DNA methylation and in vivo DNA-protein interactions on a single-copy gene level in higher eukaryotes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2602–2606. doi: 10.1073/pnas.86.8.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Sasse-Dwight S., Gralla J. D. Footprinting protein-DNA complexes in vivo. Methods Enzymol. 1991;208:146–168. doi: 10.1016/0076-6879(91)08012-7. [DOI] [PubMed] [Google Scholar]
  72. Selker E. U., Fritz D. Y., Singer M. J. Dense nonsymmetrical DNA methylation resulting from repeat-induced point mutation in Neurospora. Science. 1993 Dec 10;262(5140):1724–1728. doi: 10.1126/science.8259516. [DOI] [PubMed] [Google Scholar]
  73. Shapiro R., DiFate V., Welcher M. Deamination of cytosine derivatives by bisulfite. Mechanism of the reaction. J Am Chem Soc. 1974 Feb 6;96(3):906–912. doi: 10.1021/ja00810a043. [DOI] [PubMed] [Google Scholar]
  74. Singer-Sam J., Grant M., LeBon J. M., Okuyama K., Chapman V., Monk M., Riggs A. D. Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol. 1990 Sep;10(9):4987–4989. doi: 10.1128/mcb.10.9.4987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Singer J., Schnute W. C., Jr, Shively J. E., Todd C. W., Riggs A. D. Sensitive detection of 5-methylcytosine and quantitation of the 5-methylcytosine/cytosine ratio in DNA by gas chromatography--mass spectrometry using multiple specific ion monitoring. Anal Biochem. 1979 Apr 15;94(2):297–301. doi: 10.1016/0003-2697(79)90363-4. [DOI] [PubMed] [Google Scholar]
  76. Snibson K. J., Woodcock D., Orian J. M., Brandon M. R., Adams T. E. Methylation and expression of a metallothionein promoter ovine growth hormone fusion gene (MToGH1) in transgenic mice. Transgenic Res. 1995 Mar;4(2):114–122. doi: 10.1007/BF01969413. [DOI] [PubMed] [Google Scholar]
  77. Steigerwald S. D., Pfeifer G. P., Riggs A. D. Ligation-mediated PCR improves the sensitivity of methylation analysis by restriction enzymes and detection of specific DNA strand breaks. Nucleic Acids Res. 1990 Mar 25;18(6):1435–1439. doi: 10.1093/nar/18.6.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Sutherland E., Coe L., Raleigh E. A. McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol. 1992 May 20;225(2):327–348. doi: 10.1016/0022-2836(92)90925-a. [DOI] [PubMed] [Google Scholar]
  79. Tasheva E. S., Roufa D. J. A densely methylated DNA island is associated with a chromosomal replication origin in the human RPS14 locus. Somat Cell Mol Genet. 1995 Nov;21(6):369–383. doi: 10.1007/BF02310205. [DOI] [PubMed] [Google Scholar]
  80. Tasheva E. S., Roufa D. J. Densely methylated DNA islands in mammalian chromosomal replication origins. Mol Cell Biol. 1994 Sep;14(9):5636–5644. doi: 10.1128/mcb.14.9.5636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Tommasi S., LeBon J. M., Riggs A. D., Singer-Sam J. Methylation analysis by genomic sequencing of 5' region of mouse Pgk-1 gene and a cautionary note concerning the method. Somat Cell Mol Genet. 1993 Nov;19(6):529–541. doi: 10.1007/BF01233380. [DOI] [PubMed] [Google Scholar]
  82. Toth M., Müller U., Doerfler W. Establishment of de novo DNA methylation patterns. Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J Mol Biol. 1990 Aug 5;214(3):673–683. doi: 10.1016/0022-2836(90)90285-T. [DOI] [PubMed] [Google Scholar]
  83. Urieli-Shoval S., Gruenbaum Y., Sedat J., Razin A. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 1982 Sep 6;146(1):148–152. doi: 10.1016/0014-5793(82)80723-0. [DOI] [PubMed] [Google Scholar]
  84. Vanyushin B. F., Kirnos M. D. DNA methylation in plants. Gene. 1988 Dec 25;74(1):117–121. doi: 10.1016/0378-1119(88)90266-1. [DOI] [PubMed] [Google Scholar]
  85. Wang R. Y., Gehrke C. W., Ehrlich M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res. 1980 Oct 24;8(20):4777–4790. doi: 10.1093/nar/8.20.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Warnecke P. M., Stirzaker C., Melki J. R., Millar D. S., Paul C. L., Clark S. J. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 1997 Nov 1;25(21):4422–4426. doi: 10.1093/nar/25.21.4422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Woodcock D. M., Crowther P. J., Diver W. P. The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem Biophys Res Commun. 1987 Jun 15;145(2):888–894. doi: 10.1016/0006-291x(87)91048-5. [DOI] [PubMed] [Google Scholar]
  88. Woodcock D. M., Crowther P. J., Simmons D. L., Cooper I. A. Sequence specificity of cytosine methylation in the DNA of the Chinese hamster ovary (CHO-K1) cell line. Biochim Biophys Acta. 1984 Dec 14;783(3):227–233. doi: 10.1016/0167-4781(84)90033-2. [DOI] [PubMed] [Google Scholar]
  89. Woodcock D. M., Lawler C. B., Linsenmeyer M. E., Doherty J. P., Warren W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem. 1997 Mar 21;272(12):7810–7816. doi: 10.1074/jbc.272.12.7810. [DOI] [PubMed] [Google Scholar]
  90. Xiong Z., Laird P. W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997 Jun 15;25(12):2532–2534. doi: 10.1093/nar/25.12.2532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Yoder J. A., Soman N. S., Verdine G. L., Bestor T. H. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol. 1997 Jul 18;270(3):385–395. doi: 10.1006/jmbi.1997.1125. [DOI] [PubMed] [Google Scholar]
  92. Zhu C. M., Henney H. R., Jr DNA methylation pattern during the encystment of Physarum flavicomum. Biochem Cell Biol. 1990 Jun;68(6):944–948. doi: 10.1139/o90-139. [DOI] [PubMed] [Google Scholar]
  93. Zingg J. M., Jones P. A. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis. 1997 May;18(5):869–882. doi: 10.1093/carcin/18.5.869. [DOI] [PubMed] [Google Scholar]
  94. de Capoa A., Aleixandre C., Felli M. P., Ravenna L., Costantino M. A., Giancotti P., Vicenti O., Poggesi I., Grappelli C., Miller D. A. Inheritance of ribosomal gene activity and level of DNA methylation of individual gene clusters in a three generation family. Hum Genet. 1991 Dec;88(2):146–152. doi: 10.1007/BF00206062. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES