Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 15;26(10):2291–2297. doi: 10.1093/nar/26.10.2291

A novel splice variant of the transcription factor Nrf1 interacts with the TNFalpha promoter and stimulates transcription.

E E Prieschl 1, V Novotny 1, R Csonga 1, D Jaksche 1, A Elbe-Bürger 1, W Thumb 1, M Auer 1, G Stingl 1, T Baumruker 1
PMCID: PMC147553  PMID: 9580677

Abstract

Common signaling chains of various receptor families, despite some similarities, are able to provoke quite different cellular responses. This suggests that they are linked to different cascades and transcription factors, dependent on the context of the ligand binding moiety and the cell type. The ITAM (immunoreceptor tyrosine-based activation motif) containing gamma chain of the FcepsilonRI, FcgammaRI, FcgammaRIII and the T-cell receptor is one of these shared signaling molecules. Here, we show that in the context of the FcgammaRIII, the gamma chain activates the transcription factor Nrf1 or a closely related protein that specifically interacts with the extended kappa3 site in the TNFalpha promoter. A novel splice variant of Nrf1 with a 411 bp deletion of the serine-rich region, resulting in an overall structure reminiscent of the BTB and CNC homology (Bach) proteins, was isolated from the corresponding DC18 cells. In a gel shift analysis, this bacterially expressed splice variant binds to the TNFalpha promoter site after in vitro phosphorylation by casein kinase II (CKII). In addition, cotransfection studies demonstrate that this splice variant mediates induced transcription at the TNFalpha promoter after stimulation/activation in a heterologous system.

Full Text

The Full Text of this article is available as a PDF (204.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boulikas T. Phosphorylation of transcription factors and control of the cell cycle. Crit Rev Eukaryot Gene Expr. 1995;5(1):1–77. [PubMed] [Google Scholar]
  2. Chan J. Y., Han X. L., Kan Y. W. Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11371–11375. doi: 10.1073/pnas.90.23.11371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan J. Y., Han X. L., Kan Y. W. Isolation of cDNA encoding the human NF-E2 protein. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11366–11370. doi: 10.1073/pnas.90.23.11366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clynes R., Ravetch J. V. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity. 1995 Jul;3(1):21–26. doi: 10.1016/1074-7613(95)90155-8. [DOI] [PubMed] [Google Scholar]
  5. Csonga R., Prieschl E. E., Jaksche D., Novotny V., Baumruker T. Common and distinct signaling pathways mediate the induction of TNF-alpha and IL-5 in IgE plus antigen-stimulated mast cells. J Immunol. 1998 Jan 1;160(1):273–283. [PubMed] [Google Scholar]
  6. Daëron M., Latour S., Malbec O., Espinosa E., Pina P., Pasmans S., Fridman W. H. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity. 1995 Nov;3(5):635–646. doi: 10.1016/1074-7613(95)90134-5. [DOI] [PubMed] [Google Scholar]
  7. Daëron M., Malbec O., Latour S., Arock M., Fridman W. H. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J Clin Invest. 1995 Feb;95(2):577–585. doi: 10.1172/JCI117701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dombrowicz D., Flamand V., Brigman K. K., Koller B. H., Kinet J. P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Cell. 1993 Dec 3;75(5):969–976. doi: 10.1016/0092-8674(93)90540-7. [DOI] [PubMed] [Google Scholar]
  9. Elbe A., Schleischitz S., Strunk D., Stingl G. Fetal skin-derived MHC class I+, MHC class II- dendritic cells stimulate MHC class I-restricted responses of unprimed CD8+ T cells. J Immunol. 1994 Oct 1;153(7):2878–2889. [PubMed] [Google Scholar]
  10. Goldfeld A. E., Doyle C., Maniatis T. Human tumor necrosis factor alpha gene regulation by virus and lipopolysaccharide. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9769–9773. doi: 10.1073/pnas.87.24.9769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldfeld A. E., McCaffrey P. G., Strominger J. L., Rao A. Identification of a novel cyclosporin-sensitive element in the human tumor necrosis factor alpha gene promoter. J Exp Med. 1993 Oct 1;178(4):1365–1379. doi: 10.1084/jem.178.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldfeld A. E., Strominger J. L., Doyle C. Human tumor necrosis factor alpha gene regulation in phorbol ester stimulated T and B cell lines. J Exp Med. 1991 Jul 1;174(1):73–81. doi: 10.1084/jem.174.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hazenbos W. L., Gessner J. E., Hofhuis F. M., Kuipers H., Meyer D., Heijnen I. A., Schmidt R. E., Sandor M., Capel P. J., Daëron M. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity. 1996 Aug;5(2):181–188. doi: 10.1016/s1074-7613(00)80494-x. [DOI] [PubMed] [Google Scholar]
  14. Itoh K., Igarashi K., Hayashi N., Nishizawa M., Yamamoto M. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol. 1995 Aug;15(8):4184–4193. doi: 10.1128/mcb.15.8.4184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jarmin D. I., Kulmburg P. A., Huber N. E., Baumann G., Prieschl-Strassmayr E. E., Baumruker T. A transcription factor with AP3-like binding specificity mediates gene regulation after an allergic triggering with IgE and Ag in mouse mast cells. J Immunol. 1994 Dec 15;153(12):5720–5729. [PubMed] [Google Scholar]
  16. Johnsen O., Skammelsrud N., Luna L., Nishizawa M., Prydz H., Kolstø A. B. Small Maf proteins interact with the human transcription factor TCF11/Nrf1/LCR-F1. Nucleic Acids Res. 1996 Nov 1;24(21):4289–4297. doi: 10.1093/nar/24.21.4289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuprash D. V., Udalova I. A., Turetskaya R. L., Rice N. R., Nedospasov S. A. Conserved kappa B element located downstream of the tumor necrosis factor alpha gene: distinct NF-kappa B binding pattern and enhancer activity in LPS activated murine macrophages. Oncogene. 1995 Jul 6;11(1):97–106. [PubMed] [Google Scholar]
  18. Lewis V. A., Koch T., Plutner H., Mellman I. A complementary DNA clone for a macrophage-lymphocyte Fc receptor. 1986 Nov 27-Dec 3Nature. 324(6095):372–375. doi: 10.1038/324372a0. [DOI] [PubMed] [Google Scholar]
  19. McCaffrey P. G., Goldfeld A. E., Rao A. The role of NFATp in cyclosporin A-sensitive tumor necrosis factor-alpha gene transcription. J Biol Chem. 1994 Dec 2;269(48):30445–30450. [PubMed] [Google Scholar]
  20. Moi P., Chan K., Asunis I., Cao A., Kan Y. W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9926–9930. doi: 10.1073/pnas.91.21.9926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oyake T., Itoh K., Motohashi H., Hayashi N., Hoshino H., Nishizawa M., Yamamoto M., Igarashi K. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol. 1996 Nov;16(11):6083–6095. doi: 10.1128/mcb.16.11.6083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Preischl E. E., Pendl G. G., Elbe A., Serfling E., Harrer N. E., Stingl G., Baumruker T. Induction of the TNF-alpha promoter in the murine dendritic cell line 18 and the murine mast cell line CPII is differently regulated. J Immunol. 1996 Sep 15;157(6):2645–2653. [PubMed] [Google Scholar]
  23. Prieschl E. E., Gouilleux-Gruart V., Walker C., Harrer N. E., Baumruker T. A nuclear factor of activated T cell-like transcription factor in mast cells is involved in IL-5 gene regulation after IgE plus antigen stimulation. J Immunol. 1995 Jun 1;154(11):6112–6119. [PubMed] [Google Scholar]
  24. Prieschl E. E., Pendl G. G., Harrer N. E., Baumruker T. p21ras links Fc epsilon RI to NF-AT family member in mast cells. The AP3-like factor in this cell type is an NF-AT family member. J Immunol. 1995 Nov 15;155(10):4963–4970. [PubMed] [Google Scholar]
  25. Ravetch J. V. Fc receptors. Curr Opin Immunol. 1997 Feb;9(1):121–125. doi: 10.1016/s0952-7915(97)80168-9. [DOI] [PubMed] [Google Scholar]
  26. Ravetch J. V., Luster A. D., Weinshank R., Kochan J., Pavlovec A., Portnoy D. A., Hulmes J., Pan Y. C., Unkeless J. C. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science. 1986 Nov 7;234(4777):718–725. doi: 10.1126/science.2946078. [DOI] [PubMed] [Google Scholar]
  27. Rose D. M., Winston B. W., Chan E. D., Riches D. W., Gerwins P., Johnson G. L., Henson P. M. Fc gamma receptor cross-linking activates p42, p38, and JNK/SAPK mitogen-activated protein kinases in murine macrophages: role for p42MAPK in Fc gamma receptor-stimulated TNF-alpha synthesis. J Immunol. 1997 Apr 1;158(7):3433–3438. [PubMed] [Google Scholar]
  28. Sawchuk D. J., Mahmoudi M., Cairns E., Sinclair N. R. Nonsynonymous mutations in an Fc-receptor structural gene in NZB mice. Immunogenetics. 1996;43(1-2):112–113. doi: 10.1007/BF00186618. [DOI] [PubMed] [Google Scholar]
  29. Scharenberg A. M., Kinet J. P. The emerging field of receptor-mediated inhibitory signaling: SHP or SHIP? Cell. 1996 Dec 13;87(6):961–964. doi: 10.1016/s0092-8674(00)81790-0. [DOI] [PubMed] [Google Scholar]
  30. Sears D. W., Osman N., Tate B., McKenzie I. F., Hogarth P. M. Molecular cloning and expression of the mouse high affinity Fc receptor for IgG. J Immunol. 1990 Jan 1;144(1):371–378. [PubMed] [Google Scholar]
  31. Sylvestre D., Clynes R., Ma M., Warren H., Carroll M. C., Ravetch J. V. Immunoglobulin G-mediated inflammatory responses develop normally in complement-deficient mice. J Exp Med. 1996 Dec 1;184(6):2385–2392. doi: 10.1084/jem.184.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Takai T., Li M., Sylvestre D., Clynes R., Ravetch J. V. FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell. 1994 Feb 11;76(3):519–529. doi: 10.1016/0092-8674(94)90115-5. [DOI] [PubMed] [Google Scholar]
  33. Takai T., Ono M., Hikida M., Ohmori H., Ravetch J. V. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature. 1996 Jan 25;379(6563):346–349. doi: 10.1038/379346a0. [DOI] [PubMed] [Google Scholar]
  34. Trede N. S., Tsytsykova A. V., Chatila T., Goldfeld A. E., Geha R. S. Transcriptional activation of the human TNF-alpha promoter by superantigen in human monocytic cells: role of NF-kappa B. J Immunol. 1995 Jul 15;155(2):902–908. [PubMed] [Google Scholar]
  35. Tsai E. Y., Jain J., Pesavento P. A., Rao A., Goldfeld A. E. Tumor necrosis factor alpha gene regulation in activated T cells involves ATF-2/Jun and NFATp. Mol Cell Biol. 1996 Feb;16(2):459–467. doi: 10.1128/mcb.16.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Venugopal R., Jaiswal A. K. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14960–14965. doi: 10.1073/pnas.93.25.14960. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES