Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 15;26(10):2380–2384. doi: 10.1093/nar/26.10.2380

Step-wise DNA relaxation and decatenation by NaeI-43K.

K Jo 1, M D Topal 1
PMCID: PMC147561  PMID: 9580689

Abstract

Nae I protein was originally isolated for its restriction endonuclease properties. Nae I was later discovered to either relax or cleave supercoiled DNA, depending upon whether Nae I position 43 contains a lysine (43K) or leucine (43L) respectively. Nae I-43K DNA relaxation activity appears to be the product of coupling separate endonuclease and ligase domains within the same polypeptide. Whereas Nae I relaxes supercoiled DNA like a topoisomerase, even forming a transient covalent intermediate with the substrate DNA, Nae I shows no obvious sequence similarity to the topoisomerases. To further characterize the topoisomerase activity of Nae I, we report here that Nae I-43K changes the linking number of a single negatively supercoiled topoisomer of pBR322 by units of one and therefore is a type I topoisomerase. Positively supercoiled pBR322 was resistant to Nae I-43K. At low salt concentration Nae I-43K was processive; non-saturating amounts of enzyme relaxed a fraction of the DNA. At high salt concentration the same non-saturating amounts of Nae I-43K partially relaxed all the DNA in a step-wise fashion to give a Gaussian distribution of topoisomers, demonstrating a switch from a processive to a distributive mode of action. Nae I-43K decatenated kinetoplast DNA containing nicked circles, implying that Nae I-43K can cleave opposite a nick. The products of the reaction are decatenated nicked circles under both processive and distributive conditions. The behavior of Nae I-43K is consistent with that of a prokaryotic type I topoisomerase.

Full Text

The Full Text of this article is available as a PDF (320.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. H., Svejstrup J. Q., Westergaard O. The DNA binding, cleavage, and religation reactions of eukaryotic topoisomerases I and II. Adv Pharmacol. 1994;29A:83–101. doi: 10.1016/s1054-3589(08)60541-4. [DOI] [PubMed] [Google Scholar]
  2. Baxter B. K., Topal M. D. Formation of a cleavasome: enhancer DNA-2 stabilizes an active conformation of NaeI dimer. Biochemistry. 1993 Aug 17;32(32):8291–8298. doi: 10.1021/bi00083a033. [DOI] [PubMed] [Google Scholar]
  3. Brown P. O., Cozzarelli N. R. Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc Natl Acad Sci U S A. 1981 Feb;78(2):843–847. doi: 10.1073/pnas.78.2.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Champoux J. J. Mechanism of catalysis by eukaryotic DNA topoisomerase I. Adv Pharmacol. 1994;29A:71–82. doi: 10.1016/s1054-3589(08)60540-2. [DOI] [PubMed] [Google Scholar]
  5. Dean F. B., Cozzarelli N. R. Mechanism of strand passage by Escherichia coli topoisomerase I. The role of the required nick in catenation and knotting of duplex DNA. J Biol Chem. 1985 Apr 25;260(8):4984–4994. [PubMed] [Google Scholar]
  6. Depew D. E., Wang J. C. Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4275–4279. doi: 10.1073/pnas.72.11.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Englund P. T., Hajduk S. L., Marini J. C. The molecular biology of trypanosomes. Annu Rev Biochem. 1982;51:695–726. doi: 10.1146/annurev.bi.51.070182.003403. [DOI] [PubMed] [Google Scholar]
  8. Jo K., Topal M. D. Changing a leucine to a lysine residue makes NaeI endonuclease hypersensitive to DNA intercalative drugs. Biochemistry. 1996 Aug 6;35(31):10014–10018. doi: 10.1021/bi9604542. [DOI] [PubMed] [Google Scholar]
  9. Jo K., Topal M. D. DNA topoisomerase and recombinase activities in Nae I restriction endonuclease. Science. 1995 Mar 24;267(5205):1817–1820. doi: 10.1126/science.7892605. [DOI] [PubMed] [Google Scholar]
  10. Jo K., Topal M. D. Effects on NaeI-DNA recognition of the leucine to lysine substitution that transforms restriction endonuclease NaeI to a topoisomerase: a model for restriction endonuclease evolution. Nucleic Acids Res. 1996 Nov 1;24(21):4171–4175. doi: 10.1093/nar/24.21.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keller W. Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4876–4880. doi: 10.1073/pnas.72.12.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee M. P., Sander M., Hsieh T. S. Single strand DNA cleavage reaction of duplex DNA by Drosophila topoisomerase II. J Biol Chem. 1989 Aug 15;264(23):13510–13518. [PubMed] [Google Scholar]
  13. Low R. L., Kaguni J. M., Kornberg A. Potent catenation of supercoiled and gapped DNA circles by topoisomerase I in the presence of a hydrophilic polymer. J Biol Chem. 1984 Apr 10;259(7):4576–4581. [PubMed] [Google Scholar]
  14. Maxwell A., Gellert M. Mechanistic aspects of DNA topoisomerases. Adv Protein Chem. 1986;38:69–107. doi: 10.1016/s0065-3233(08)60526-4. [DOI] [PubMed] [Google Scholar]
  15. Pulleyblank D. E., Shure M., Tang D., Vinograd J., Vosberg H. P. Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4280–4284. doi: 10.1073/pnas.72.11.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts R. J. Restriction enzymes and their isoschizomers. Nucleic Acids Res. 1987;15 (Suppl):r189–r217. doi: 10.1093/nar/15.suppl.r189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rybenkov V. V., Ullsperger C., Vologodskii A. V., Cozzarelli N. R. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science. 1997 Aug 1;277(5326):690–693. doi: 10.1126/science.277.5326.690. [DOI] [PubMed] [Google Scholar]
  18. Shure M., Vinograd J. The number of superhelical turns in native virion SV40 DNA and minicol DNA determined by the band counting method. Cell. 1976 Jun;8(2):215–226. doi: 10.1016/0092-8674(76)90005-2. [DOI] [PubMed] [Google Scholar]
  19. Topal M. D., Thresher R. J., Conrad M., Griffith J. NaeI endonuclease binding to pBR322 DNA induces looping. Biochemistry. 1991 Feb 19;30(7):2006–2010. doi: 10.1021/bi00221a038. [DOI] [PubMed] [Google Scholar]
  20. Tse-Dinh Y. C. Biochemistry of bacterial type I DNA topoisomerases. Adv Pharmacol. 1994;29A:21–37. doi: 10.1016/s1054-3589(08)60538-4. [DOI] [PubMed] [Google Scholar]
  21. Tse Y., Wang J. C. E. coli and M. luteus DNA topoisomerase I can catalyze catenation of decatenation of double-stranded DNA rings. Cell. 1980 Nov;22(1 Pt 1):269–276. doi: 10.1016/0092-8674(80)90174-9. [DOI] [PubMed] [Google Scholar]
  22. Vosberg H. P. DNA topoisomerases: enzymes that control DNA conformation. Curr Top Microbiol Immunol. 1985;114:19–102. doi: 10.1007/978-3-642-70227-3_2. [DOI] [PubMed] [Google Scholar]
  23. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. [DOI] [PubMed] [Google Scholar]
  24. Yang C. C., Topal M. D. Nonidentical DNA-binding sites of endonuclease NaeI recognize different families of sequences flanking the recognition site. Biochemistry. 1992 Oct 13;31(40):9657–9664. doi: 10.1021/bi00155a019. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES