Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 15;26(10):2426–2432. doi: 10.1093/nar/26.10.2426

Analysis of sequences and predicted structures required for viral satellite RNA accumulation by in vivo genetic selection.

C D Carpenter 1, A E Simon 1
PMCID: PMC147565  PMID: 9580696

Abstract

In vivo genetic selection was used to study the sequences and structures required for accumulation of subviral sat-RNA C associated with turnip crinkle virus (TCV). This technique is advantageous over site-specific mutagenesis by allowing side-by-side selection from numerous sequence possibilities as well as sequence evolution. A 22 base hairpin and 6 base single-stranded tail located at the 3'-terminus of sat-RNA C were previously identified as the promoter for minus strand synthesis. Approximately 50% of plants co-inoculated with TCV and sat-RNA C containing randomized sequence in place of the 22 base hairpin accumulated sat-RNA in uninoculated leaves. The 22 base region differed in sat-RNA accumulating in all infected plants, but nearly all were predicted to fold into a hairpin structure that maintained the 6 base tail as a single-stranded sequence. Two additional rounds of sat-RNA amplification led to four sequence family 'winners', with three families containing multiple variants, indicating that evolution of these sequences was occurring in plants. Three of the four sequence family winners had the same 3 bp at the base of the stem as wild-type sat-RNA C. Two of the winners shared 15 of 22 identical bases, including the entire stem region and extending two bases into the loop. These results demonstrate the utility of the in vivo selection approach by showing that both sequence and structure contribute to a more active 3'-end region for accumulation of sat-RNA C.

Full Text

The Full Text of this article is available as a PDF (149.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumenthal T., Carmichael G. G. RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem. 1979;48:525–548. doi: 10.1146/annurev.bi.48.070179.002521. [DOI] [PubMed] [Google Scholar]
  2. Brown D., Gold L. Selection and characterization of RNAs replicated by Q beta replicase. Biochemistry. 1995 Nov 14;34(45):14775–14782. doi: 10.1021/bi00045a019. [DOI] [PubMed] [Google Scholar]
  3. Brown D., Gold L. Template recognition by an RNA-dependent RNA polymerase: identification and characterization of two RNA binding sites on Q beta replicase. Biochemistry. 1995 Nov 14;34(45):14765–14774. doi: 10.1021/bi00045a018. [DOI] [PubMed] [Google Scholar]
  4. Bujarski J. J., Dreher T. W., Hall T. C. Deletions in the 3'-terminal tRNA-like structure of brome mosaic virus RNA differentially affect aminoacylation and replication in vitro. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5636–5640. doi: 10.1073/pnas.82.17.5636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpenter C. D., Simon A. E. In vivo restoration of biologically active 3' ends of virus-associated RNAs by nonhomologous RNA recombination and replacement of a terminal motif. J Virol. 1996 Jan;70(1):478–486. doi: 10.1128/jvi.70.1.478-486.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrington J. C., Heaton L. A., Zuidema D., Hillman B. I., Morris T. J. The genome structure of turnip crinkle virus. Virology. 1989 May;170(1):219–226. doi: 10.1016/0042-6822(89)90369-3. [DOI] [PubMed] [Google Scholar]
  7. Coulter L. R., Landree M. A., Cooper T. A. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol. 1997 Apr;17(4):2143–2150. doi: 10.1128/mcb.17.4.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deiman B. A., Kortlever R. M., Pleij C. W. The role of the pseudoknot at the 3' end of turnip yellow mosaic virus RNA in minus-strand synthesis by the viral RNA-dependent RNA polymerase. J Virol. 1997 Aug;71(8):5990–5996. doi: 10.1128/jvi.71.8.5990-5996.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dreher T. W., Hall T. C. Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. J Mol Biol. 1988 May 5;201(1):31–40. doi: 10.1016/0022-2836(88)90436-6. [DOI] [PubMed] [Google Scholar]
  10. Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
  11. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  12. Grimm C., Lund E., Dahlberg J. E. In vivo selection of RNAs that localize in the nucleus. EMBO J. 1997 Feb 17;16(4):793–806. doi: 10.1093/emboj/16.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guan H., Song C., Simon A. E. RNA promoters located on (-)-strands of a subviral RNA associated with turnip crinkle virus. RNA. 1997 Dec;3(12):1401–1412. [PMC free article] [PubMed] [Google Scholar]
  14. Houser-Scott F., Ansel-McKinney P., Cai J. M., Gehrke L. In vitro genetic selection analysis of alfalfa mosaic virus coat protein binding to 3'-terminal AUGC repeats in the viral RNAs. J Virol. 1997 Mar;71(3):2310–2319. doi: 10.1128/jvi.71.3.2310-2319.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kong Q., Oh J. W., Carpenter C. D., Simon A. E. The coat protein of turnip crinkle virus is involved in subviral RNA-mediated symptom modulation and accumulation. Virology. 1997 Nov 24;238(2):478–485. doi: 10.1006/viro.1997.8853. [DOI] [PubMed] [Google Scholar]
  16. Li X. H., Heaton L. A., Morris T. J., Simon A. E. Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9173–9177. doi: 10.1073/pnas.86.23.9173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Libri D., Stutz F., McCarthy T., Rosbash M. RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. RNA. 1995 Jun;1(4):425–436. [PMC free article] [PubMed] [Google Scholar]
  18. Madhani H. D., Guthrie C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 1994 May 1;8(9):1071–1086. doi: 10.1101/gad.8.9.1071. [DOI] [PubMed] [Google Scholar]
  19. Nagy P. D., Carpenter C. D., Simon A. E. A novel 3'-end repair mechanism in an RNA virus. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1113–1118. doi: 10.1073/pnas.94.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oh J. W., Kong Q., Song C., Carpenter C. D., Simon A. E. Open reading frames of turnip crinkle virus involved in satellite symptom expression and incompatibility with Arabidopsis thaliana ecotype Dijon. Mol Plant Microbe Interact. 1995 Nov-Dec;8(6):979–987. doi: 10.1094/mpmi-8-0979. [DOI] [PubMed] [Google Scholar]
  21. Pilipenko E. V., Poperechny K. V., Maslova S. V., Melchers W. J., Slot H. J., Agol V. I. Cis-element, oriR, involved in the initiation of (-) strand poliovirus RNA: a quasi-globular multi-domain RNA structure maintained by tertiary ('kissing') interactions. EMBO J. 1996 Oct 1;15(19):5428–5436. [PMC free article] [PubMed] [Google Scholar]
  22. Qu F., Morris T. J. Encapsidation of turnip crinkle virus is defined by a specific packaging signal and RNA size. J Virol. 1997 Feb;71(2):1428–1435. doi: 10.1128/jvi.71.2.1428-1435.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shen L. X., Cai Z., Tinoco I., Jr RNA structure at high resolution. FASEB J. 1995 Aug;9(11):1023–1033. doi: 10.1096/fasebj.9.11.7544309. [DOI] [PubMed] [Google Scholar]
  24. Siegel R. W., Adkins S., Kao C. C. Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11238–11243. doi: 10.1073/pnas.94.21.11238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Simon A. E., Howell S. H. The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3' end of the helper virus genome. EMBO J. 1986 Dec 20;5(13):3423–3428. doi: 10.1002/j.1460-2075.1986.tb04664.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Song C., Simon A. E. RNA-dependent RNA polymerase from plants infected with turnip crinkle virus can transcribe (+)- and (-)-strands of virus-associated RNAs. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8792–8796. doi: 10.1073/pnas.91.19.8792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Song C., Simon A. E. Requirement of a 3'-terminal stem-loop in in vitro transcription by an RNA-dependent RNA polymerase. J Mol Biol. 1995 Nov 17;254(1):6–14. doi: 10.1006/jmbi.1995.0594. [DOI] [PubMed] [Google Scholar]
  28. Stupina V., Simon A. E. Analysis in vivo of turnip crinkle virus satellite RNA C variants with mutations in the 3'-terminal minus-strand promoter. Virology. 1997 Nov 24;238(2):470–477. doi: 10.1006/viro.1997.8850. [DOI] [PubMed] [Google Scholar]
  29. Tsai C. H., Dreher T. W. Second-site suppressor mutations assist in studying the function of the 3' noncoding region of turnip yellow mosaic virus RNA. J Virol. 1992 Sep;66(9):5190–5199. doi: 10.1128/jvi.66.9.5190-5199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  31. Wang J., Simon A. E. Analysis of the two subgenomic RNA promoters for turnip crinkle virus in vivo and in vitro. Virology. 1997 May 26;232(1):174–186. doi: 10.1006/viro.1997.8550. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES