Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 15;26(10):2500–2501. doi: 10.1093/nar/26.10.2500

Preparation of active tRNA gene transcripts devoid of 3'-extended products and dimers.

N Kholod 1, K Vassilenko 1, M Shlyapnikov 1, V Ksenzenko 1, L Kisselev 1
PMCID: PMC147566  PMID: 9580706

Abstract

Significant amounts (10-30%) of 3'-extended products with one or two extra nucleotides are synthesized in the course of run-off tRNA gene transcription with T7 RNA polymerase. Denaturing polyacrylamide gel electrophoresis appeared to be insufficient to provide preparative amounts of pure correct-size transcripts. Formation of dimers by tRNA gene transcripts as side products in the course of their activation is also another obstacle in preparation of biologically active transcripts. Here, we have shown that EF-Tu affinity chromatography and/or non-denaturing electrophoresis are simple and efficient tools for isolation of highly active correct-size transcripts. Conditions for transcript activation in vitro should be carefully controlled to prevent dimer formation and obtain reliable data on tRNA transcript structure and function.

Full Text

The Full Text of this article is available as a PDF (61.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. C., Scaringe S. A., Earp B. E., Frederick C. A. HPLC purification of RNA for crystallography and NMR. RNA. 1996 Feb;2(2):110–117. [PMC free article] [PubMed] [Google Scholar]
  2. Aphasizhev R., Théobald-Dietrich A., Kostyuk D., Kochetkov S. N., Kisselev L., Giegé R., Fasiolo F. Structure and aminoacylation capacities of tRNA transcripts containing deoxyribonucleotides. RNA. 1997 Aug;3(8):893–904. [PMC free article] [PubMed] [Google Scholar]
  3. Cazenave C., Uhlenbeck O. C. RNA template-directed RNA synthesis by T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6972–6976. doi: 10.1073/pnas.91.15.6972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu W. C., Horowitz J. 19F NMR of 5-fluorouracil-substituted transfer RNA transcribed in vitro: resonance assignment of fluorouracil-guanine base pairs. Nucleic Acids Res. 1989 Sep 25;17(18):7241–7252. doi: 10.1093/nar/17.18.7241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curnow A. W., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: recognition of dimeric, unmodified tRNA(Tyr). Biochimie. 1994;76(12):1183–1191. doi: 10.1016/0300-9084(94)90048-5. [DOI] [PubMed] [Google Scholar]
  6. Cusack S., Yaremchuk A., Tukalo M. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 1996 Nov 15;15(22):6321–6334. [PMC free article] [PubMed] [Google Scholar]
  7. Grosshans C. A., Cech T. R. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification. Nucleic Acids Res. 1991 Jul 25;19(14):3875–3880. doi: 10.1093/nar/19.14.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kholod N. S., Pan'kova N. V., Mayorov S. G., Krutilina A. I., Shlyapnikov M. G., Kisselev L. L., Ksenzenko V. N. Transfer RNA(Phe) isoacceptors possess non-identical set of identity elements at high and low Mg2+ concentration. FEBS Lett. 1997 Jul 7;411(1):123–127. doi: 10.1016/s0014-5793(97)00608-x. [DOI] [PubMed] [Google Scholar]
  9. Kim R., Holbrook E. L., Jancarik J., Kim S. H. Synthesis and purification of milligram quantities of short RNA transcripts. Biotechniques. 1995 Jun;18(6):992–994. [PubMed] [Google Scholar]
  10. Loehr J. S., Keller E. B. Dimers of alanine transfer RNA with acceptor activity. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1115–1122. doi: 10.1073/pnas.61.3.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moran S., Ren R. X., Sheils C. J., Rumney S., 4th, Kool E. T. Non-hydrogen bonding 'terminator' nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis. Nucleic Acids Res. 1996 Jun 1;24(11):2044–2052. doi: 10.1093/nar/24.11.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Motorin Y., Bec G., Tewari R., Grosjean H. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. RNA. 1997 Jul;3(7):721–733. [PMC free article] [PubMed] [Google Scholar]
  13. Peterson E. T., Uhlenbeck O. C. Determination of recognition nucleotides for Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. 1992 Oct 27;31(42):10380–10389. doi: 10.1021/bi00157a028. [DOI] [PubMed] [Google Scholar]
  14. Ribeiro S., Nock S., Sprinzl M. Purification of aminoacyl-tRNA by affinity chromatography on immobilized Thermus thermophilus EF-Tu.GTP. Anal Biochem. 1995 Jul 1;228(2):330–335. doi: 10.1006/abio.1995.1359. [DOI] [PubMed] [Google Scholar]
  15. Tremblay T. L., Lapointe J. The so-called tRNAGlu1 of Escherichia coli is a stable denatured conformer of the major isoacceptor tRNAGlu2. Biochem Cell Biol. 1986 Apr;64(4):315–322. doi: 10.1139/o86-044. [DOI] [PubMed] [Google Scholar]
  16. Yang S. K., Söll D. G., Crothers D. M. Properties of a dimer of tRNA I Tyr 1 (Escherichia coli). Biochemistry. 1972 Jun 6;11(12):2311–2320. doi: 10.1021/bi00762a016. [DOI] [PubMed] [Google Scholar]
  17. Yin Y., Carter C. W., Jr Incomplete factorial and response surface methods in experimental design: yield optimization of tRNA(Trp) from in vitro T7 RNA polymerase transcription. Nucleic Acids Res. 1996 Apr 1;24(7):1279–1286. doi: 10.1093/nar/24.7.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES