Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 15;26(10):2508–2510. doi: 10.1093/nar/26.10.2508

New positive/negative selectable markers for mammalian cells on the basis of Blasticidin deaminase-thymidine kinase fusions.

C Karreman 1
PMCID: PMC147567  PMID: 9580709

Abstract

Two positive and negative selectable markers were created for use in mammalian cells. They are based on two genes for the resistance to Blasticidin S (BlaS) and on the thymidine kinase (Tk) gene of herpes simplex virus (HSV). The markers can be selected positively by their ability to induce BlaS resistance and negatively on the induced sensitivity towards gancyclovir (GANC). Both constructs are also expressed in Escherichia coli and transfer BlaS resistance to this organism as well, making these markers very suitable for the construction of shuttle vectors.

Full Text

The Full Text of this article is available as a PDF (41.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini R. J., O'Neill J. P., Nicklas J. A., Heintz N. H., Kelleher P. C. Alterations of the hprt gene in human in vivo-derived 6-thioguanine-resistant T lymphocytes. Nature. 1985 Jul 25;316(6026):369–371. doi: 10.1038/316369a0. [DOI] [PubMed] [Google Scholar]
  2. Besnard C., Monthioux E., Jami J. Selection against expression of the Escherichia coli gene gpt in hprt+ mouse teratocarcinoma and hybrid cells. Mol Cell Biol. 1987 Nov;7(11):4139–4141. doi: 10.1128/mcb.7.11.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borrelli E., Heyman R., Hsi M., Evans R. M. Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7572–7576. doi: 10.1073/pnas.85.20.7572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brielmeier M., Béchet J. M., Falk M. H., Pawlita M., Polack A., Bornkamm G. W. Improving stable transfection efficiency: antioxidants dramatically improve the outgrowth of clones under dominant marker selection. Nucleic Acids Res. 1998 May 1;26(9):2082–2085. doi: 10.1093/nar/26.9.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dale E. C., Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10558–10562. doi: 10.1073/pnas.88.23.10558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dirks W., Wirth M., Hauser H. Dicistronic transcription units for gene expression in mammalian cells. Gene. 1993 Jun 30;128(2):247–249. doi: 10.1016/0378-1119(93)90569-o. [DOI] [PubMed] [Google Scholar]
  7. Izumi M., Miyazawa H., Kamakura T., Yamaguchi I., Endo T., Hanaoka F. Blasticidin S-resistance gene (bsr): a novel selectable marker for mammalian cells. Exp Cell Res. 1991 Dec;197(2):229–233. doi: 10.1016/0014-4827(91)90427-v. [DOI] [PubMed] [Google Scholar]
  8. Kamakura T., Yoneyama K., Yamaguchi I. Expression of the blasticidin S deaminase gene (bsr) in tobacco: fungicide tolerance and a new selective marker for transgenic plants. Mol Gen Genet. 1990 Sep;223(2):332–334. doi: 10.1007/BF00265072. [DOI] [PubMed] [Google Scholar]
  9. Karreman S., Hauser H., Karreman C. On the use of double FLP recognition targets (FRTs) in the LTR of retroviruses for the construction of high producer cell lines. Nucleic Acids Res. 1996 May 1;24(9):1616–1624. doi: 10.1093/nar/24.9.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kimura M., Kamakura T., Tao Q. Z., Kaneko I., Yamaguchi I. Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker for Schizosaccharomyces pombe and Pyricularia oryzae. Mol Gen Genet. 1994 Jan;242(2):121–129. doi: 10.1007/BF00391004. [DOI] [PubMed] [Google Scholar]
  11. Kimura M., Takatsuki A., Yamaguchi I. Blasticidin S deaminase gene from Aspergillus terreus (BSD): a new drug resistance gene for transfection of mammalian cells. Biochim Biophys Acta. 1994 Nov 22;1219(3):653–659. doi: 10.1016/0167-4781(94)90224-0. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi K., Kamakura T., Tanaka T., Yamaguchi I., Endo T. Nucleotide sequence of the bsr gene and N-terminal amino acid sequence of blasticidin S deaminase from blasticidin S resistant Escherichia coli TK121. Agric Biol Chem. 1991 Dec;55(12):3155–3157. [PubMed] [Google Scholar]
  13. Lester S. C., LeVan S. K., Steglich C., DeMars R. Expression of human genes for adenine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase after genetic transformation of mouse cells with purified human DNA. Somatic Cell Genet. 1980 Mar;6(2):241–259. doi: 10.1007/BF01538799. [DOI] [PubMed] [Google Scholar]
  14. Lupton S. D., Brunton L. L., Kalberg V. A., Overell R. W. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol Cell Biol. 1991 Jun;11(6):3374–3378. doi: 10.1128/mcb.11.6.3374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Melton D. W., Ketchen A. M., Selfridge J. Stability of HPRT marker gene expression at different gene-targeted loci: observing and overcoming a position effect. Nucleic Acids Res. 1997 Oct 1;25(19):3937–3943. doi: 10.1093/nar/25.19.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mullen C. A., Kilstrup M., Blaese R. M. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):33–37. doi: 10.1073/pnas.89.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Gorman S., Fox D. T., Wahl G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991 Mar 15;251(4999):1351–1355. doi: 10.1126/science.1900642. [DOI] [PubMed] [Google Scholar]
  18. Sauer B., Henderson N. Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 1989 Jan 11;17(1):147–161. doi: 10.1093/nar/17.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz F., Maeda N., Smithies O., Hickey R., Edelmann W., Skoultchi A., Kucherlapati R. A dominant positive and negative selectable gene for use in mammalian cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10416–10420. doi: 10.1073/pnas.88.23.10416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spring K. J., Mattick J. S., Don R. H. Escherichia coli gpt as a positive and negative selectable marker in embryonal stem cells. Biochim Biophys Acta. 1994 Jun 21;1218(2):158–162. doi: 10.1016/0167-4781(94)90005-1. [DOI] [PubMed] [Google Scholar]
  21. Sutoh K. A transformation vector for dictyostelium discoideum with a new selectable marker bsr. Plasmid. 1993 Sep;30(2):150–154. doi: 10.1006/plas.1993.1042. [DOI] [PubMed] [Google Scholar]
  22. Tamura K., Kimura M., Yamaguchi I. Blasticidin S deaminase gene (BSD): a new selection marker gene for transformation of Arabidopsis thaliana and Nicotiana tabacum. Biosci Biotechnol Biochem. 1995 Dec;59(12):2336–2338. doi: 10.1271/bbb.59.2336. [DOI] [PubMed] [Google Scholar]
  23. Taniguchi M., Sanbo M., Watanabe S., Naruse I., Mishina M., Yagi T. Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance gene, pac: a transient gene-integration marker for ES cells. Nucleic Acids Res. 1998 Jan 15;26(2):679–680. doi: 10.1093/nar/26.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tucker K. L., Wang Y., Dausman J., Jaenisch R. A transgenic mouse strain expressing four drug-selectable marker genes. Nucleic Acids Res. 1997 Sep 15;25(18):3745–3746. doi: 10.1093/nar/25.18.3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wei K., Huber B. E. Cytosine deaminase gene as a positive selection marker. J Biol Chem. 1996 Feb 16;271(7):3812–3816. [PubMed] [Google Scholar]
  26. Wigler M., Silverstein S., Lee L. S., Pellicer A., Cheng Y. c., Axel R. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 1977 May;11(1):223–232. doi: 10.1016/0092-8674(77)90333-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES