Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 May 15;26(10):2481–2487. doi: 10.1093/nar/26.10.2481

DNA condensation for gene therapy as monitored by atomic force microscopy.

H G Hansma 1, R Golan 1, W Hsieh 1, C P Lollo 1, P Mullen-Ley 1, D Kwoh 1
PMCID: PMC147577  PMID: 9580703

Abstract

The atomic force microscope (AFM) was used to assay the extent of DNA condensation in approximately 100 different complexes of DNA with polylysine (PL) or PL covalently attached to the glycoproteins asialoorosomucoid (AsOR) or orosomucoid (OR). The best condensation of DNA was obtained with 10 kDa PL covalently attached to AsOR, at a lysine:nucleotide (Lys:nt) ratio of 5:1 or higher. These conditions produce large numbers of toroids and short rods with contour lengths of 300-400 nm. Some DNA condensation into shortened thickened structures was seen with 10 kDa PL attached to AsOR at Lys:nt ratios of 1.6:1 and 3:1. Some DNA condensation was also seen with 4 kDa PL at Lys:nt ratios of 3:1 and higher. Little DNA condensation was seen with PL alone or with PL convalently attached to OR at Lys:nt ratios up to 6:1. AsOR-PL enhanced gene expression in the mouse liver approximately 10- to 50-fold as compared with PL alone.

Full Text

The Full Text of this article is available as a PDF (947.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. J., Bradbury E. M., Balhorn R. AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res. 1997 Jun 1;25(11):2221–2226. doi: 10.1093/nar/25.11.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bezanilla M., Drake B., Nudler E., Kashlev M., Hansma P. K., Hansma H. G. Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys J. 1994 Dec;67(6):2454–2459. doi: 10.1016/S0006-3495(94)80733-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  4. Bunnell B. A., Askari F. K., Wilson J. M. Targeted delivery of antisense oligonucleotides by molecular conjugates. Somat Cell Mol Genet. 1992 Nov;18(6):559–569. doi: 10.1007/BF01232652. [DOI] [PubMed] [Google Scholar]
  5. Chattoraj D. K., Gosule L. C., Schellman A. DNA condensation with polyamines. II. Electron microscopic studies. J Mol Biol. 1978 May 25;121(3):327–337. doi: 10.1016/0022-2836(78)90367-4. [DOI] [PubMed] [Google Scholar]
  6. Cristiano R. J., Curiel D. T. Strategies to accomplish gene delivery via the receptor-mediated endocytosis pathway. Cancer Gene Ther. 1996 Jan-Feb;3(1):49–57. [PubMed] [Google Scholar]
  7. Dunlap D. D., Maggi A., Soria M. R., Monaco L. Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res. 1997 Aug 1;25(15):3095–3101. doi: 10.1093/nar/25.15.3095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dzau V. J., Mann M. J., Morishita R., Kaneda Y. Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11421–11425. doi: 10.1073/pnas.93.21.11421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferkol T., Lindberg G. L., Chen J., Perales J. C., Crawford D. R., Ratnoff O. D., Hanson R. W. Regulation of the phosphoenolpyruvate carboxykinase/human factor IX gene introduced into the livers of adult rats by receptor-mediated gene transfer. FASEB J. 1993 Aug;7(11):1081–1091. doi: 10.1096/fasebj.7.11.8370479. [DOI] [PubMed] [Google Scholar]
  10. Gao X., Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 1996 Jan 23;35(3):1027–1036. doi: 10.1021/bi952436a. [DOI] [PubMed] [Google Scholar]
  11. Gosule L. C., Schellman J. A. DNA condensation with polyamines I. Spectroscopic studies. J Mol Biol. 1978 May 25;121(3):311–326. doi: 10.1016/0022-2836(78)90366-2. [DOI] [PubMed] [Google Scholar]
  12. Hansma H. G., Browne K. A., Bezanilla M., Bruice T. C. Bending and straightening of DNA induced by the same ligand: characterization with the atomic force microscope. Biochemistry. 1994 Jul 19;33(28):8436–8441. doi: 10.1021/bi00194a007. [DOI] [PubMed] [Google Scholar]
  13. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  14. Hansma H. G., Kim K. J., Laney D. E., Garcia R. A., Argaman M., Allen M. J., Parsons S. M. Properties of biomolecules measured from atomic force microscope images: a review. J Struct Biol. 1997 Jul;119(2):99–108. doi: 10.1006/jsbi.1997.3855. [DOI] [PubMed] [Google Scholar]
  15. Hansma H. G., Laney D. E., Bezanilla M., Sinsheimer R. L., Hansma P. K. Applications for atomic force microscopy of DNA. Biophys J. 1995 May;68(5):1672–1677. doi: 10.1016/S0006-3495(95)80343-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansma H. G., Revenko I., Kim K., Laney D. E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res. 1996 Feb 15;24(4):713–720. doi: 10.1093/nar/24.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hansma H. G., Sinsheimer R. L., Groppe J., Bruice T. C., Elings V., Gurley G., Bezanilla M., Mastrangelo I. A., Hough P. V., Hansma P. K. Recent advances in atomic force microscopy of DNA. Scanning. 1993 Sep-Oct;15(5):296–299. doi: 10.1002/sca.4950150509. [DOI] [PubMed] [Google Scholar]
  18. Hickman M. A., Malone R. W., Lehmann-Bruinsma K., Sih T. R., Knoell D., Szoka F. C., Walzem R., Carlson D. M., Powell J. S. Gene expression following direct injection of DNA into liver. Hum Gene Ther. 1994 Dec;5(12):1477–1483. doi: 10.1089/hum.1994.5.12-1477. [DOI] [PubMed] [Google Scholar]
  19. Inman R. B. Some factors affecting electron microscopic length of deoxyribonucleic acid. J Mol Biol. 1967 Apr 28;25(2):209–216. doi: 10.1016/0022-2836(67)90138-6. [DOI] [PubMed] [Google Scholar]
  20. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4288–4292. doi: 10.1073/pnas.72.11.4288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marshall E. Gene therapy's growing pains. Science. 1995 Aug 25;269(5227):1050, 1052-5. doi: 10.1126/science.7652552. [DOI] [PubMed] [Google Scholar]
  23. McKee T. D., DeRome M. E., Wu G. Y., Findeis M. A. Preparation of asialoorosomucoid-polylysine conjugates. Bioconjug Chem. 1994 Jul-Aug;5(4):306–311. doi: 10.1021/bc00028a004. [DOI] [PubMed] [Google Scholar]
  24. Merwin J. R., Noell G. S., Thomas W. L., Chiou H. C., DeRome M. E., McKee T. D., Spitalny G. L., Findeis M. A. Targeted delivery of DNA using YEE(GalNAcAH)3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor. Bioconjug Chem. 1994 Nov-Dec;5(6):612–620. doi: 10.1021/bc00030a017. [DOI] [PubMed] [Google Scholar]
  25. Müller D. J., Amrein M., Engel A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol. 1997 Jul;119(2):172–188. doi: 10.1006/jsbi.1997.3875. [DOI] [PubMed] [Google Scholar]
  26. Müller D. J., Schoenenberger C. A., Schabert F., Engel A. Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. J Struct Biol. 1997 Jul;119(2):149–157. doi: 10.1006/jsbi.1997.3878. [DOI] [PubMed] [Google Scholar]
  27. Perales J. C., Ferkol T., Molas M., Hanson R. W. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur J Biochem. 1994 Dec 1;226(2):255–266. doi: 10.1111/j.1432-1033.1994.tb20049.x. [DOI] [PubMed] [Google Scholar]
  28. Perales J. C., Grossmann G. A., Molas M., Liu G., Ferkol T., Harpst J., Oda H., Hanson R. W. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol Chem. 1997 Mar 14;272(11):7398–7407. doi: 10.1074/jbc.272.11.7398. [DOI] [PubMed] [Google Scholar]
  29. Phillips S. C. Receptor-mediated DNA delivery approaches to human gene therapy. Biologicals. 1995 Mar;23(1):13–16. doi: 10.1016/1045-1056(95)90004-7. [DOI] [PubMed] [Google Scholar]
  30. Wagner E., Cotten M., Foisner R., Birnstiel M. L. Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4255–4259. doi: 10.1073/pnas.88.10.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilson J. M., Grossman M., Wu C. H., Chowdhury N. R., Wu G. Y., Chowdhury J. R. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits. J Biol Chem. 1992 Jan 15;267(2):963–967. [PubMed] [Google Scholar]
  32. Wolfert M. A., Seymour L. W. Atomic force microscopic analysis of the influence of the molecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed with DNA. Gene Ther. 1996 Mar;3(3):269–273. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES