Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 1;26(11):2729–2734. doi: 10.1093/nar/26.11.2729

Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase.

A C Vergunst 1, L E Jansen 1, P J Hooykaas 1
PMCID: PMC147585  PMID: 9592161

Abstract

In this study Agrobacterium tumefaciens transferred DNA (T-DNA) was targeted to a chromosomally introduced lox site in Arabidopsis thaliana by employing the Cre recombinase system. To this end, Arabidopsis target lines were constructed which harboured an active chimeric promoter-lox-cre gene stably integrated in the plant genome. A T-DNA vector with a promoterless lox -neomycin phosphotransferase (nptII) fusion was targeted to this genomic lox site with an efficiency of 1.2-2.3% of the number of random events. Cre-catalyzed site-specific recombination resulted in restoration of nptII expression by translational fusion of the lox-nptII sequence in the integration vector with the transcription and translation initiation sequences present at the target site, allowing selective enrichment on medium containing kanamycin. Simultaneously, the coding sequence of the Cre recombinase was disconnected from these same transcription and translation initiation signals by displacement, aimed at preventing the efficient reversible excision reaction. Of the site-specific recombinants, 89% were the result of precise integration. Furthermore, approximately 50% of these integrants were single copy transformants, based on PCR analysis. Agrobacterium T-DNA, which is transferred to plant cells as a single-stranded linear DNA structure, is in principle incompatible with Cre-mediated integration. Nevertheless, the results presented here clearly demonstrate the feasibility of the Agrobacterium -mediated transformation system, which is generally used for transformation of plants, to obtain site-specific integration.

Full Text

The Full Text of this article is available as a PDF (129.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert H., Dale E. C., Lee E., Ow D. W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 1995 Apr;7(4):649–659. doi: 10.1046/j.1365-313x.1995.7040649.x. [DOI] [PubMed] [Google Scholar]
  2. Baubonis W., Sauer B. Genomic targeting with purified Cre recombinase. Nucleic Acids Res. 1993 May 11;21(9):2025–2029. doi: 10.1093/nar/21.9.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker D., Kemper E., Schell J., Masterson R. New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol. 1992 Dec;20(6):1195–1197. doi: 10.1007/BF00028908. [DOI] [PubMed] [Google Scholar]
  4. Bethke B., Sauer B. Segmental genomic replacement by Cre-mediated recombination: genotoxic stress activation of the p53 promoter in single-copy transformants. Nucleic Acids Res. 1997 Jul 15;25(14):2828–2834. doi: 10.1093/nar/25.14.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bilang R., Peterhans A., Bogucki A., Paszkowski J. Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays. Mol Cell Biol. 1992 Jan;12(1):329–336. doi: 10.1128/mcb.12.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brandon E. P., Idzerda R. L., McKnight G. S. Knockouts. Targeting the mouse genome: a compendium of knockouts (Part I) Curr Biol. 1995 Jun 1;5(6):625–634. doi: 10.1016/s0960-9822(95)00127-8. [DOI] [PubMed] [Google Scholar]
  7. Comai L., Moran P., Maslyar D. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol. 1990 Sep;15(3):373–381. doi: 10.1007/BF00019155. [DOI] [PubMed] [Google Scholar]
  8. Dale E. C., Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10558–10562. doi: 10.1073/pnas.88.23.10558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukushige S., Sauer B. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7905–7909. doi: 10.1073/pnas.89.17.7905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gheysen G., Villarroel R., Van Montagu M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev. 1991 Feb;5(2):287–297. doi: 10.1101/gad.5.2.287. [DOI] [PubMed] [Google Scholar]
  11. Halfter U., Morris P. C., Willmitzer L. Gene targeting in Arabidopsis thaliana. Mol Gen Genet. 1992 Jan;231(2):186–193. doi: 10.1007/BF00279790. [DOI] [PubMed] [Google Scholar]
  12. Lahaye T., Rueger B., Toepsch S., Thalhammer J., Schulze-Lefert P. Detection of single-copy sequences with digoxigenin-labeled probes in a complex plant genome after separation on pulsed-field gels. Biotechniques. 1996 Dec;21(6):1067-70, 1072. doi: 10.2144/96216st04. [DOI] [PubMed] [Google Scholar]
  13. Mattanovich D., Rüker F., Machado A. C., Laimer M., Regner F., Steinkellner H., Himmler G., Katinger H. Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res. 1989 Aug 25;17(16):6747–6747. doi: 10.1093/nar/17.16.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayerhofer R., Koncz-Kalman Z., Nawrath C., Bakkeren G., Crameri A., Angelis K., Redei G. P., Schell J., Hohn B., Koncz C. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 1991 Mar;10(3):697–704. doi: 10.1002/j.1460-2075.1991.tb07999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Medberry S. L., Dale E., Qin M., Ow D. W. Intra-chromosomal rearrangements generated by Cre-lox site-specific recombination. Nucleic Acids Res. 1995 Feb 11;23(3):485–490. doi: 10.1093/nar/23.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mozo T., Hooykaas P. J. Design of a novel system for the construction of vectors for Agrobacterium-mediated plant transformation. Mol Gen Genet. 1992 Dec;236(1):1–7. doi: 10.1007/BF00279636. [DOI] [PubMed] [Google Scholar]
  17. Mozo T., Hooykaas P. J. Factors affecting the rate of T-DNA transfer from Agrobacterium tumefaciens to Nicotiana glauca plant cells. Plant Mol Biol. 1992 Sep;19(6):1019–1030. doi: 10.1007/BF00040533. [DOI] [PubMed] [Google Scholar]
  18. Odell J. T., Hoopes J. L., Vermerris W. Seed-specific gene activation mediated by the Cre/lox site-specific recombination system. Plant Physiol. 1994 Oct;106(2):447–458. doi: 10.1104/pp.106.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Odell J., Caimi P., Sauer B., Russell S. Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet. 1990 Sep;223(3):369–378. doi: 10.1007/BF00264442. [DOI] [PubMed] [Google Scholar]
  20. Offringa R., de Groot M. J., Haagsman H. J., Does M. P., van den Elzen P. J., Hooykaas P. J. Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J. 1990 Oct;9(10):3077–3084. doi: 10.1002/j.1460-2075.1990.tb07504.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Qin M., Bayley C., Stockton T., Ow D. W. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1706–1710. doi: 10.1073/pnas.91.5.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanger M., Daubert S., Goodman R. M. Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol. 1990 Mar;14(3):433–443. doi: 10.1007/BF00028779. [DOI] [PubMed] [Google Scholar]
  23. Sauer B. Site-specific recombination: developments and applications. Curr Opin Biotechnol. 1994 Oct;5(5):521–527. doi: 10.1016/0958-1669(94)90068-x. [DOI] [PubMed] [Google Scholar]
  24. Schlake T., Bode J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry. 1994 Nov 1;33(43):12746–12751. doi: 10.1021/bi00209a003. [DOI] [PubMed] [Google Scholar]
  25. Smith A. J., De Sousa M. A., Kwabi-Addo B., Heppell-Parton A., Impey H., Rabbitts P. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet. 1995 Apr;9(4):376–385. doi: 10.1038/ng0495-376. [DOI] [PubMed] [Google Scholar]
  26. Tinland B., Hohn B., Puchta H. Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8000–8004. doi: 10.1073/pnas.91.17.8000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vergunst A. C., de Waal E. C., Hooykaas P. J. Root transformation by Agrobacterium tumefaciens. Methods Mol Biol. 1998;82:227–244. doi: 10.1385/0-89603-391-0:227. [DOI] [PubMed] [Google Scholar]
  29. Yusibov V. M., Steck T. R., Gupta V., Gelvin S. B. Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2994–2998. doi: 10.1073/pnas.91.8.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zheng Z., Hayashimoto A., Li Z., Murai N. Hygromycin resistance gene cassettes for vector construction and selection of transformed rice protoplasts. Plant Physiol. 1991 Oct;97(2):832–835. doi: 10.1104/pp.97.2.832. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES