Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 1;26(11):2554–2559. doi: 10.1093/nar/26.11.2554

DNA sequence analysis by MALDI mass spectrometry.

F Kirpekar 1, E Nordhoff 1, L K Larsen 1, K Kristiansen 1, P Roepstorff 1, F Hillenkamp 1
PMCID: PMC147593  PMID: 9592136

Abstract

Conventional DNA sequencing is based on gel electrophoretic separation of the sequencing products. Gel casting and electrophoresis are the time limiting steps, and the gel separation is occasionally imperfect due to aberrant mobility of certain fragments, leading to erroneous sequence determination. Furthermore, illegitimately terminated products frequently cannot be distinguished from correctly terminated ones, a phenomenon that also obscures data interpretation. In the present work the use of MALDI mass spectrometry for sequencing of DNA amplified from clinical samples is implemented. The unambiguous and fast identification of deletions and substitutions in DNA amplified from heterozygous carriers realistically suggest MALDI mass spectrometry as a future alternative to conventional sequencing procedures for high throughput screening for mutations. Unique features of the method are demonstrated by sequencing a DNA fragment that could not be sequenced conventionally because of gel electrophoretic band compression and the presence of multiple non-specific termination products. Taking advantage of the accurate mass information provided by MALDI mass spectrometry, the sequence was deduced, and the nature of the non-specific termination could be determined. The method described here increases the fidelity in DNA sequencing, is fast, compatible with standard DNA sequencing procedures, and amenable to automation.

Full Text

The Full Text of this article is available as a PDF (95.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andresen B. S., Knudsen I., Jensen P. K., Rasmussen K., Gregersen N. Two novel nonradioactive polymerase chain reaction-based assays of dried blood spots, genomic DNA, or whole cells for fast, reliable detection of Z and S mutations in the alpha 1-antitrypsin gene. Clin Chem. 1992 Oct;38(10):2100–2107. [PubMed] [Google Scholar]
  2. Jensen O. N., Mortensen P., Vorm O., Mann M. Automation of matrix-assisted laser desorption/ionization mass spectrometry using fuzzy logic feedback control. Anal Chem. 1997 May 1;69(9):1706–1714. doi: 10.1021/ac961189t. [DOI] [PubMed] [Google Scholar]
  3. Juhasz P., Roskey M. T., Smirnov I. P., Haff L. A., Vestal M. L., Martin S. A. Applications of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry to oligonucleotide analysis. Anal Chem. 1996 Mar 15;68(6):941–946. doi: 10.1021/ac9510503. [DOI] [PubMed] [Google Scholar]
  4. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
  5. Kirpekar F., Nordhoff E., Kristiansen K., Roepstorff P., Hahner S., Hillenkamp F. 7-Deaza purine bases offer a higher ion stability in the analysis of DNA by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 1995;9(6):525–531. doi: 10.1002/rcm.1290090611. [DOI] [PubMed] [Google Scholar]
  6. Kirpekar F., Nordhoff E., Kristiansen K., Roepstorff P., Lezius A., Hahner S., Karas M., Hillenkamp F. Matrix assisted laser desorption/ionization mass spectrometry of enzymatically synthesized RNA up to 150 kDa. Nucleic Acids Res. 1994 Sep 25;22(19):3866–3870. doi: 10.1093/nar/22.19.3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Köster H., Tang K., Fu D. J., Braun A., van den Boom D., Smith C. L., Cotter R. J., Cantor C. R. A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nat Biotechnol. 1996 Sep;14(9):1123–1128. doi: 10.1038/nbt0996-1123. [DOI] [PubMed] [Google Scholar]
  8. Loewen P. C., Switala J. Template secondary structure can increase the error frequency of the DNA polymerase from Thermus aquaticus. Gene. 1995 Oct 16;164(1):59–63. doi: 10.1016/0378-1119(95)00383-h. [DOI] [PubMed] [Google Scholar]
  9. Mouradian S., Rank D. R., Smith L. M. Analyzing sequencing reactions from bacteriophage M13 by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(12):1475–1478. doi: 10.1002/(SICI)1097-0231(199609)10:12<1475::AID-RCM696>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  10. Nissen H., Hansen A. B., Guldberg P., Petersen N. E., Larsen M. L., Haghfelt T., Kristiansen K., Hørder M. Detection of a single base deletion in codon 424 of the low density lipoprotein receptor gene in a Danish family with familial hypercholesterolemia. Atherosclerosis. 1994 Dec;111(2):209–215. doi: 10.1016/0021-9150(94)90095-7. [DOI] [PubMed] [Google Scholar]
  11. Nordhoff E., Cramer R., Karas M., Hillenkamp F., Kirpekar F., Kristiansen K., Roepstorff P. Ion stability of nucleic acids in infrared matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. 1993 Jul 25;21(15):3347–3357. doi: 10.1093/nar/21.15.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nordhoff E., Ingendoh A., Cramer R., Overberg A., Stahl B., Karas M., Hillenkamp F., Crain P. F. Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid Commun Mass Spectrom. 1992 Dec;6(12):771–776. doi: 10.1002/rcm.1290061212. [DOI] [PubMed] [Google Scholar]
  13. Nordhoff E., Kirpekar F., Karas M., Cramer R., Hahner S., Hillenkamp F., Kristiansen K., Roepstroff P., Lezius A. Comparison of IR- and UV-matrix-assisted laser desorption/ionization mass spectrometry of oligodeoxynucleotides. Nucleic Acids Res. 1994 Jul 11;22(13):2460–2465. doi: 10.1093/nar/22.13.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pieles U., Zürcher W., Schär M., Moser H. E. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 1993 Jul 11;21(14):3191–3196. doi: 10.1093/nar/21.14.3191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roskey M. T., Juhasz P., Smirnov I. P., Takach E. J., Martin S. A., Haff L. A. DNA sequencing by delayed extraction-matrix-assisted laser desorption/ionization time of flight mass spectrometry. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4724–4729. doi: 10.1073/pnas.93.10.4724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schneider K., Chait B. T. Increased stability of nucleic acids containing 7-deaza-guanosine and 7-deaza-adenosine may enable rapid DNA sequencing by matrix-assisted laser desorption mass spectrometry. Nucleic Acids Res. 1995 May 11;23(9):1570–1575. doi: 10.1093/nar/23.9.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shaler T. A., Tan Y., Wickham J. N., Wu K. J., Becker C. H. Analysis of enzymatic DNA sequencing reactions by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1995;9(10):942–947. doi: 10.1002/rcm.1290091015. [DOI] [PubMed] [Google Scholar]
  18. Tabor S., Richardson C. C. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6339–6343. doi: 10.1073/pnas.92.14.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu K. J., Shaler T. A., Becker C. H. Time-of-flight mass spectrometry of underivatized single-stranded DNA oligomers by matrix-assisted laser desorption. Anal Chem. 1994 May 15;66(10):1637–1645. doi: 10.1021/ac00082a007. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES