Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 1;26(11):2519–2525. doi: 10.1093/nar/26.11.2519

The environment of 5S rRNA in the ribosome: cross-links to the GTPase-associated area of 23S rRNA.

P Sergiev 1, S Dokudovskaya 1, E Romanova 1, A Topin 1, A Bogdanov 1, R Brimacombe 1, O Dontsova 1
PMCID: PMC147597  PMID: 9592132

Abstract

Two photoreactive diazirine derivatives of uridine were used to study contacts between 5S rRNA and 23 rRNA in situ in Escherichia coli ribosomes. 2'-Amino-2'-deoxy-uridine or 5-methyleneaminouridine were introduced into 5S rRNA by T7 transcription. After incorporation of these uridine analogues into the transcript their amino groups were modified with 4-[3-(trifluoromethyl)-3 H -diazirin-3-yl]benzyl isothiocyanate or the N -hydroxysuccinimide ester of 4-[3-(trifluoromethyl)-3 H -diazirin-3-yl]benzoic acid respectively. 5S rRNA carrying the photoreactive diazirine groups (referred to as the 2'-aminoribose derivative and the 5-methyleneamino derivative respectively) was reconstituted into 50S subunits or 70S ribosomes. After mild UV irradiation cross-links formed to 23S rRNA were analysed by standard procedures. All of the observed cross-links involved residue U89 of the 5S rRNA. Three nucleotides of 23S rRNA were cross-linked to this residue with the 5-methyleneamino derivative, namely U958, G1022 and G1138. With the 2'-aminoribose derivative a single cross-link was found, to U958. The significance of these cross-links for our understanding of the structure and function of 5S rRNA and its environment in the ribosome are discussed.

Full Text

The Full Text of this article is available as a PDF (145.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bochkareva E. S., Lissin N. M., Girshovich A. S. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature. 1988 Nov 17;336(6196):254–257. doi: 10.1038/336254a0. [DOI] [PubMed] [Google Scholar]
  2. Bochkariov D. E., Kogon A. A. Application of 3-[3-(3-(trifluoromethyl)diazirin-3-yl)phenyl]-2,3- dihydroxypropionic acid, carbene-generating, cleavable cross-linking reagent for photoaffinity labeling. Anal Biochem. 1992 Jul;204(1):90–95. doi: 10.1016/0003-2697(92)90144-v. [DOI] [PubMed] [Google Scholar]
  3. Branlant C., Krol A., Sriwidada J., Brimacombe R. RNA sequences associated with proteins L1, L9, and L5, L18, L25, in ribonucleoprotein fragments isolated from the 50-S subunit of Escherichia coli ribosomes. Eur J Biochem. 1976 Nov 15;70(2):483–492. doi: 10.1111/j.1432-1033.1976.tb11039.x. [DOI] [PubMed] [Google Scholar]
  4. Brimacombe R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. 1995 Jun 1;230(2):365–383. [PubMed] [Google Scholar]
  5. Brunel C., Romby P., Westhof E., Ehresmann C., Ehresmann B. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. J Mol Biol. 1991 Sep 5;221(1):293–308. doi: 10.1016/0022-2836(91)80220-o. [DOI] [PubMed] [Google Scholar]
  6. Dohme F., Nierhaus K. H. Total reconstitution and assembly of 50 S subunits from Escherichia coli Ribosomes in vitro. J Mol Biol. 1976 Nov 15;107(4):585–599. doi: 10.1016/s0022-2836(76)80085-x. [DOI] [PubMed] [Google Scholar]
  7. Dokudovskaya S., Dontsova O., Shpanchenko O., Bogdanov A., Brimacombe R. Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA. RNA. 1996 Feb;2(2):146–152. [PMC free article] [PubMed] [Google Scholar]
  8. Dontsova O., Tishkov V., Dokudovskaya S., Bogdanov A., Döring T., Rinke-Appel J., Thamm S., Greuer B., Brimacombe R. Stem-loop IV of 5S rRNA lies close to the peptidyltransferase center. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4125–4129. doi: 10.1073/pnas.91.10.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Egebjerg J., Douthwaite S. R., Liljas A., Garrett R. A. Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coli. J Mol Biol. 1990 May 20;213(2):275–288. doi: 10.1016/S0022-2836(05)80190-1. [DOI] [PubMed] [Google Scholar]
  10. Evstafieva A. G., Shatsky I. N., Bogdanov A. A., Vasiliev V. D. Topography of RNA in the ribosome: location of the 5 S RNA residues A39 and U40 on the central protuberance of the 50 S subunit. FEBS Lett. 1985 Jun 3;185(1):57–62. doi: 10.1016/0014-5793(85)80740-7. [DOI] [PubMed] [Google Scholar]
  11. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  12. Garrett R. A., Noller H. F. Structures of complexes of 5S RNA with ribosomal proteins L5, L18 and L25 from Escherichia coli: identification of kethoxal-reactive sites on the 5S RNA. J Mol Biol. 1979 Aug 25;132(4):637–648. doi: 10.1016/0022-2836(79)90379-6. [DOI] [PubMed] [Google Scholar]
  13. Göringer H. U., Szymkowiak C., Wagner R. Escherichia coli 5S RNA A and B conformers. Characterisation by enzymatic and chemical methods. Eur J Biochem. 1984 Oct 1;144(1):25–34. doi: 10.1111/j.1432-1033.1984.tb08426.x. [DOI] [PubMed] [Google Scholar]
  14. Göringer H. U., Wagner R. Construction and functional analysis of ribosomal 5S RNA from Escherichia coli with single base changes in the ribosomal protein binding sites. Biol Chem Hoppe Seyler. 1986 Aug;367(8):769–780. doi: 10.1515/bchm3.1986.367.2.769. [DOI] [PubMed] [Google Scholar]
  15. Hancock J., Wagner R. A structural model of 5S RNA from E. coli based on intramolecular crosslinking evidence. Nucleic Acids Res. 1982 Feb 25;10(4):1257–1269. doi: 10.1093/nar/10.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herr W., Noller H. F. Protection of specific sites in 23 S and 5 S RNA from chemical modification by association of 30 S and 50 S ribosomes. J Mol Biol. 1979 Jun 5;130(4):421–432. doi: 10.1016/0022-2836(79)90432-7. [DOI] [PubMed] [Google Scholar]
  17. Huber P. W., Wool I. G. Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):322–326. doi: 10.1073/pnas.81.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuznetsova L. G., Romanova E. A., Volkov E. M., Tashlitskii V. N., Oretskaia T. S., Krynetskaia N. F., Shabarova Z. A. Oligodezoksiribonukleotidy, soderzhashchie 2'-amino-2'-dezoksipirimidinovye nukleozidy. Bioorg Khim. 1993 Apr;19(4):455–466. [PubMed] [Google Scholar]
  19. Larsen N. Higher order interactions in 23s rRNA. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5044–5048. doi: 10.1073/pnas.89.11.5044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
  21. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  22. Mueller F., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. J Mol Biol. 1997 Aug 29;271(4):524–544. doi: 10.1006/jmbi.1997.1210. [DOI] [PubMed] [Google Scholar]
  23. Noller H. F., Garrett R. A. Structure of 5 S ribosomal RNA from Escherichia coli: identification of kethoxal-reactive sites in the A and B conformations. J Mol Biol. 1979 Aug 25;132(4):621–636. doi: 10.1016/0022-2836(79)90378-4. [DOI] [PubMed] [Google Scholar]
  24. Noller H. F., Herr W. Letters to the editor: Accessibility of 5 S RNA in 50 S ribosomal subunits. J Mol Biol. 1974 Nov 25;90(1):181–184. doi: 10.1016/0022-2836(74)90266-6. [DOI] [PubMed] [Google Scholar]
  25. Osswald M., Greuer B., Brimacombe R. Localization of a series of RNA-protein cross-link sites in the 23S and 5S ribosomal RNA from Escherichia coli, induced by treatment of 50S subunits with three different bifunctional reagents. Nucleic Acids Res. 1990 Dec 11;18(23):6755–6760. doi: 10.1093/nar/18.23.6755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peattie D. A., Douthwaite S., Garrett R. A., Noller H. F. A "bulged" double helix in a RNA-protein contact site. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7331–7335. doi: 10.1073/pnas.78.12.7331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ROSSET R., MONIER R. [Apropos of the presence of weak molecular weight RNA in the ribosomes of Escherichia Coli]. Biochim Biophys Acta. 1963 Apr 30;68:653–656. doi: 10.1016/0006-3002(63)90199-9. [DOI] [PubMed] [Google Scholar]
  28. Rinke-Appel J., Jünke N., Osswald M., Brimacombe R. The ribosomal environment of tRNA: crosslinks to rRNA from positions 8 and 20:1 in the central fold of tRNA located at the A, P, or E site. RNA. 1995 Dec;1(10):1018–1028. [PMC free article] [PubMed] [Google Scholar]
  29. Rosendahl G., Douthwaite S. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res. 1994 Feb 11;22(3):357–363. doi: 10.1093/nar/22.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rosendahl G., Hansen L. H., Douthwaite S. Pseudoknot in domain II of 23 S rRNA is essential for ribosome function. J Mol Biol. 1995 May 26;249(1):59–68. doi: 10.1006/jmbi.1995.0280. [DOI] [PubMed] [Google Scholar]
  31. Sergiev P. V., Lavrik I. N., Wlasoff V. A., Dokudovskaya S. S., Dontsova O. A., Bogdanov A. A., Brimacombe R. The path of mRNA through the bacterial ribosome: a site-directed crosslinking study using new photoreactive derivatives of guanosine and uridine. RNA. 1997 May;3(5):464–475. [PMC free article] [PubMed] [Google Scholar]
  32. Shatsky I. N., Evstafieva A. G., Bystrova T. F., Bogdanov A. A., Vasiliev V. D. Topography of RNA in the ribosome: location of the 3'-end of 5 S RNA on the central protuberance of the 50 S subunit. FEBS Lett. 1980 Nov 17;121(1):97–100. doi: 10.1016/0014-5793(80)81274-9. [DOI] [PubMed] [Google Scholar]
  33. Shpanchenko O. V., Zvereva M. I., Dontsova O. A., Nierhaus K. H., Bogdanov A. A. 5S rRNA sugar-phosphate backbone protection in complexes with specific ribosomal proteins. FEBS Lett. 1996 Sep 23;394(1):71–75. doi: 10.1016/0014-5793(96)00872-1. [DOI] [PubMed] [Google Scholar]
  34. Sigurdsson S. T., Tuschl T., Eckstein F. Probing RNA tertiary structure: interhelical crosslinking of the hammerhead ribozyme. RNA. 1995 Aug;1(6):575–583. [PMC free article] [PubMed] [Google Scholar]
  35. Sköld S. E. Chemical crosslinking of elongation factor G to the 23S RNA in 70S ribosomes from Escherichia coli. Nucleic Acids Res. 1983 Jul 25;11(14):4923–4932. doi: 10.1093/nar/11.14.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stark H., Orlova E. V., Rinke-Appel J., Jünke N., Mueller F., Rodnina M., Wintermeyer W., Brimacombe R., van Heel M. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell. 1997 Jan 10;88(1):19–28. doi: 10.1016/s0092-8674(00)81854-1. [DOI] [PubMed] [Google Scholar]
  37. Stiege W., Atmadja J., Zobawa M., Brimacombe R. Investigation of the tertiary folding of Escherichia coli ribosomal RNA by intra-RNA cross-linking in vivo. J Mol Biol. 1986 Sep 5;191(1):135–138. doi: 10.1016/0022-2836(86)90429-8. [DOI] [PubMed] [Google Scholar]
  38. Vester B., Garrett R. A. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. EMBO J. 1988 Nov;7(11):3577–3587. doi: 10.1002/j.1460-2075.1988.tb03235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Volckaert G., Fiers W. A micromethod for base analysis of 32P-labeled oligoribonulcleotides. Anal Biochem. 1977 Nov;83(1):222–227. doi: 10.1016/0003-2697(77)90530-9. [DOI] [PubMed] [Google Scholar]
  40. Walleczek J., Schüler D., Stöffler-Meilicke M., Brimacombe R., Stöffler G. A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO J. 1988 Nov;7(11):3571–3576. doi: 10.1002/j.1460-2075.1988.tb03234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zwieb C., Brimacombe R. Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, GFR. Nucleic Acids Res. 1979;6(5):1775–1790. doi: 10.1093/nar/6.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. von Ahsen U., Noller H. F. Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science. 1995 Jan 13;267(5195):234–237. doi: 10.1126/science.7528943. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES