Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 1;26(11):2740–2746. doi: 10.1093/nar/26.11.2740

Computational approaches to identify leucine zippers.

E Bornberg-Bauer 1, E Rivals 1, M Vingron 1
PMCID: PMC147599  PMID: 9592163

Abstract

The leucine zipper is a dimerization domain occurring mostly in regulatory and thus in many oncogenic proteins. The leucine repeat in the sequence has been traditionally used for identification, however with poor reliability. The coiled coil structure of a leucine zipper is required for dimerization and can be predicted with reasonable accuracy by existing algorithms. We exploit this fact for identification of leucine zippers from sequence alone. We present a program, 2ZIP, which combines a standard coiled coil prediction algorithm with an approximate search for the characteristic leucine repeat. No further information from homologues is required for prediction. This approach improves significantly over existing methods, especially in that the coiled coil prediction turns out to be highly informative and avoids large numbers of false positives. Many problems in predicting zippers or assessing prediction results stem from wrong sequence annotations in the database.

Full Text

The Full Text of this article is available as a PDF (165.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A., Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res. 1997 Jan 1;25(1):31–36. doi: 10.1093/nar/25.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1997. Nucleic Acids Res. 1997 Jan 1;25(1):217–221. doi: 10.1093/nar/25.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger B., Wilson D. B., Wolf E., Tonchev T., Milla M., Kim P. S. Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8259–8263. doi: 10.1073/pnas.92.18.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brendel V., Karlin S. Too many leucine zippers? Nature. 1989 Oct 19;341(6243):574–575. doi: 10.1038/341574a0. [DOI] [PubMed] [Google Scholar]
  5. Dorow D. S., Devereux L., Dietzsch E., De Kretser T. Identification of a new family of human epithelial protein kinases containing two leucine/isoleucine-zipper domains. Eur J Biochem. 1993 Apr 15;213(2):701–710. doi: 10.1111/j.1432-1033.1993.tb17810.x. [DOI] [PubMed] [Google Scholar]
  6. Ebneth A., Adermann K., Wolfes H. Does a synthetic peptide containing the leucine-zipper domain of c-myb form an alpha-helical structure in solution? FEBS Lett. 1994 Jan 17;337(3):265–268. doi: 10.1016/0014-5793(94)80205-x. [DOI] [PubMed] [Google Scholar]
  7. Hirst J. D., Vieth M., Skolnick J., Brooks C. L., 3rd Predicting leucine zipper structures from sequence. Protein Eng. 1996 Aug;9(8):657–662. doi: 10.1093/protein/9.8.657. [DOI] [PubMed] [Google Scholar]
  8. Krylov D., Olive M., Vinson C. Extending dimerization interfaces: the bZIP basic region can form a coiled coil. EMBO J. 1995 Nov 1;14(21):5329–5337. doi: 10.1002/j.1460-2075.1995.tb00217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  10. Littlewood T. D., Evan G. I. Transcription factors 2: helix-loop-helix. Protein Profile. 1994;1(6):635–709. [PubMed] [Google Scholar]
  11. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
  12. Lupas A. Predicting coiled-coil regions in proteins. Curr Opin Struct Biol. 1997 Jun;7(3):388–393. doi: 10.1016/s0959-440x(97)80056-5. [DOI] [PubMed] [Google Scholar]
  13. Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
  14. Muhle-Goll C., Gibson T., Schuck P., Schubert D., Nalis D., Nilges M., Pastore A. The dimerization stability of the HLH-LZ transcription protein family is modulated by the leucine zippers: a CD and NMR study of TFEB and c-Myc. Biochemistry. 1994 Sep 20;33(37):11296–11306. doi: 10.1021/bi00203a027. [DOI] [PubMed] [Google Scholar]
  15. Muhle-Goll C., Nilges M., Pastore A. The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers. Biochemistry. 1995 Oct 17;34(41):13554–13564. doi: 10.1021/bi00041a035. [DOI] [PubMed] [Google Scholar]
  16. O'Shea E. K., Rutkowski R., Kim P. S. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell. 1992 Feb 21;68(4):699–708. doi: 10.1016/0092-8674(92)90145-3. [DOI] [PubMed] [Google Scholar]
  17. Parry D. A. Coiled-coils in alpha-helix-containing proteins: analysis of the residue types within the heptad repeat and the use of these data in the prediction of coiled-coils in other proteins. Biosci Rep. 1982 Dec;2(12):1017–1024. doi: 10.1007/BF01122170. [DOI] [PubMed] [Google Scholar]
  18. Ruberti I., Sessa G., Lucchetti S., Morelli G. A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 1991 Jul;10(7):1787–1791. doi: 10.1002/j.1460-2075.1991.tb07703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vingron M., Nordheim A., Müller R. Anatomy of fos proteins. Oncogene Res. 1988;3(1):1–7. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES