Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 1;26(11):2672–2678. doi: 10.1093/nar/26.11.2672

GAGA factor binding to DNA via a single trinucleotide sequence element.

R C Wilkins 1, J T Lis 1
PMCID: PMC147603  PMID: 9592153

Abstract

GAGA transcription factor (GAF) is an essential protein in Drosophila , important for the transcriptional regulation of numerous genes. GAF binds to GA repeats in the promoters of these genes via a DNA-binding domain containing a single zinc finger. While GAF binding sites are typically composed of 3.5 GA repeats, the Drosophila hsp70 gene contains much smaller elements, some of which are as little as three bases (GAG) in length. Interestingly, the binding of GAF to more distant trinucleotide elements is relatively strong and not appreciably affected by the removal of larger GA arrays in the promoter. Moreover, a simple synthetic GAG sequence is sufficient to bind GAF in vitro . Here we directly compare the affinity of GAF for different sequence elements by immunoprecipitation and gel mobility shift analysis. Furthermore, our measures of the concentration of GAF in vivo indicate that it is a highly abundant nuclear protein, prevalent enough to occupy a sizable fraction of correspondingly abundant trinucleotide sites.

Full Text

The Full Text of this article is available as a PDF (323.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benyajati C., Mueller L., Xu N., Pappano M., Gao J., Mosammaparast M., Conklin D., Granok H., Craig C., Elgin S. Multiple isoforms of GAGA factor, a critical component of chromatin structure. Nucleic Acids Res. 1997 Aug 15;25(16):3345–3353. doi: 10.1093/nar/25.16.3345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biggin M. D., Tjian R. Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell. 1988 Jun 3;53(5):699–711. doi: 10.1016/0092-8674(88)90088-8. [DOI] [PubMed] [Google Scholar]
  3. Burns L. G., Peterson C. L. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol. 1997 Aug;17(8):4811–4819. doi: 10.1128/mcb.17.8.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Croston G. E., Kerrigan L. A., Lira L. M., Marshak D. R., Kadonaga J. T. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science. 1991 Feb 8;251(4994):643–649. doi: 10.1126/science.1899487. [DOI] [PubMed] [Google Scholar]
  5. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A., Sedat J. W. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. doi: 10.1016/s0092-8674(00)81240-4. [DOI] [PubMed] [Google Scholar]
  6. Fernandes M., Xiao H., Lis J. T. Binding of heat shock factor to and transcriptional activation of heat shock genes in Drosophila. Nucleic Acids Res. 1995 Dec 11;23(23):4799–4804. doi: 10.1093/nar/23.23.4799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fernandes M., Xiao H., Lis J. T. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions. Nucleic Acids Res. 1994 Jan 25;22(2):167–173. doi: 10.1093/nar/22.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giardina C., Pérez-Riba M., Lis J. T. Promoter melting and TFIID complexes on Drosophila genes in vivo. Genes Dev. 1992 Nov;6(11):2190–2200. doi: 10.1101/gad.6.11.2190. [DOI] [PubMed] [Google Scholar]
  9. Glaser R. L., Thomas G. H., Siegfried E., Elgin S. C., Lis J. T. Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats. J Mol Biol. 1990 Feb 20;211(4):751–761. doi: 10.1016/0022-2836(90)90075-W. [DOI] [PubMed] [Google Scholar]
  10. Granok H., Leibovitch B. A., Shaffer C. D., Elgin S. C. Chromatin. Ga-ga over GAGA factor. Curr Biol. 1995 Mar 1;5(3):238–241. doi: 10.1016/s0960-9822(95)00048-0. [DOI] [PubMed] [Google Scholar]
  11. Greisman H. A., Pabo C. O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science. 1997 Jan 31;275(5300):657–661. doi: 10.1126/science.275.5300.657. [DOI] [PubMed] [Google Scholar]
  12. Kerrigan L. A., Croston G. E., Lira L. M., Kadonaga J. T. Sequence-specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. J Biol Chem. 1991 Jan 5;266(1):574–582. [PubMed] [Google Scholar]
  13. Kim J. S., Kim J., Cepek K. L., Sharp P. A., Pabo C. O. Design of TATA box-binding protein/zinc finger fusions for targeted regulation of gene expression. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3616–3620. doi: 10.1073/pnas.94.8.3616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laney J. D., Biggin M. D. Zeste-mediated activation by an enhancer is independent of cooperative DNA binding in vivo. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3602–3604. doi: 10.1073/pnas.94.8.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee H., Kraus K. W., Wolfner M. F., Lis J. T. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev. 1992 Feb;6(2):284–295. doi: 10.1101/gad.6.2.284. [DOI] [PubMed] [Google Scholar]
  16. Liu-Johnson H. N., Gartenberg M. R., Crothers D. M. The DNA binding domain and bending angle of E. coli CAP protein. Cell. 1986 Dec 26;47(6):995–1005. doi: 10.1016/0092-8674(86)90814-7. [DOI] [PubMed] [Google Scholar]
  17. Lu Q., Wallrath L. L., Allan B. D., Glaser R. L., Lis J. T., Elgin S. C. Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene. J Mol Biol. 1992 Jun 20;225(4):985–998. doi: 10.1016/0022-2836(92)90099-6. [DOI] [PubMed] [Google Scholar]
  18. Lu Q., Wallrath L. L., Granok H., Elgin S. C. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol Cell Biol. 1993 May;13(5):2802–2814. doi: 10.1128/mcb.13.5.2802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nardelli J., Gibson T. J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. Nature. 1991 Jan 10;349(6305):175–178. doi: 10.1038/349175a0. [DOI] [PubMed] [Google Scholar]
  20. O'Brien T., Wilkins R. C., Giardina C., Lis J. T. Distribution of GAGA protein on Drosophila genes in vivo. Genes Dev. 1995 May 1;9(9):1098–1110. doi: 10.1101/gad.9.9.1098. [DOI] [PubMed] [Google Scholar]
  21. Omichinski J. G., Pedone P. V., Felsenfeld G., Gronenborn A. M., Clore G. M. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat Struct Biol. 1997 Feb;4(2):122–132. doi: 10.1038/nsb0297-122. [DOI] [PubMed] [Google Scholar]
  22. Pedone P. V., Ghirlando R., Clore G. M., Gronenborn A. M., Felsenfeld G., Omichinski J. G. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2822–2826. doi: 10.1073/pnas.93.7.2822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rougvie A. E., Lis J. T. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell. 1988 Sep 9;54(6):795–804. doi: 10.1016/s0092-8674(88)91087-2. [DOI] [PubMed] [Google Scholar]
  24. Shopland L. S., Hirayoshi K., Fernandes M., Lis J. T. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev. 1995 Nov 15;9(22):2756–2769. doi: 10.1101/gad.9.22.2756. [DOI] [PubMed] [Google Scholar]
  25. Shopland L. S., Lis J. T. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences. Chromosoma. 1996 Sep;105(3):158–171. doi: 10.1007/BF02509497. [DOI] [PubMed] [Google Scholar]
  26. Soeller W. C., Oh C. E., Kornberg T. B. Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol. 1993 Dec;13(12):7961–7970. doi: 10.1128/mcb.13.12.7961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Soeller W. C., Poole S. J., Kornberg T. In vitro transcription of the Drosophila engrailed gene. Genes Dev. 1988 Jan;2(1):68–81. doi: 10.1101/gad.2.1.68. [DOI] [PubMed] [Google Scholar]
  28. Tsukiyama T., Becker P. B., Wu C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature. 1994 Feb 10;367(6463):525–532. doi: 10.1038/367525a0. [DOI] [PubMed] [Google Scholar]
  29. Tsukiyama T., Wu C. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell. 1995 Dec 15;83(6):1011–1020. doi: 10.1016/0092-8674(95)90216-3. [DOI] [PubMed] [Google Scholar]
  30. Weber J. A., Taxman D. J., Lu Q., Gilmour D. S. Molecular architecture of the hsp70 promoter after deletion of the TATA box or the upstream regulation region. Mol Cell Biol. 1997 Jul;17(7):3799–3808. doi: 10.1128/mcb.17.7.3799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilkins R. C., Lis J. T. Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res. 1997 Oct 15;25(20):3963–3968. doi: 10.1093/nar/25.20.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xiao H., Perisic O., Lis J. T. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell. 1991 Feb 8;64(3):585–593. doi: 10.1016/0092-8674(91)90242-q. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES