Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 1;26(11):2827–2828. doi: 10.1093/nar/26.11.2827

MALDI-TOF mass spectrometric typing of single nucleotide polymorphisms with mass-tagged ddNTPs.

Z Fei 1, T Ono 1, L M Smith 1
PMCID: PMC147612  PMID: 9592175

Abstract

A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based method has recently been reported for the typing of single nucleotide polymorphisms using single nucleotide primer extension. This method is limited in some cases by the resolution of the mass determination, as the mass difference between nucleotides can be as little as 9 Da (the difference between A and T). A variation of this method is described here in which a mass-tagged dideoxynucleotide is employed in the primer extension reactions in place of the unmodified dideoxynucleotide. The increased mass difference due to the presence of the mass-tags substantially improves the accuracy and versatility of the procedure.

Full Text

The Full Text of this article is available as a PDF (52.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbin A., Froment O., Boivin S., Marion M. J., Belpoggi F., Maltoni C., Montesano R. p53 gene mutation pattern in rat liver tumors induced by vinyl chloride. Cancer Res. 1997 May 1;57(9):1695–1698. [PubMed] [Google Scholar]
  2. Cooper D. N., Smith B. A., Cooke H. J., Niemann S., Schmidtke J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet. 1985;69(3):201–205. doi: 10.1007/BF00293024. [DOI] [PubMed] [Google Scholar]
  3. Haff L. A., Smirnov I. P. Multiplex genotyping of PCR products with MassTag-labeled primers. Nucleic Acids Res. 1997 Sep 15;25(18):3749–3750. doi: 10.1093/nar/25.18.3749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haff L. A., Smirnov I. P. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 1997 Apr;7(4):378–388. doi: 10.1101/gr.7.4.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
  6. Kawano R., Nishisaka T., Takeshima Y., Yonehara S., Inai K. Role of point mutation of the K-ras gene in tumorigenesis of B6C3F1 mouse lung lesions induced by urethane. Jpn J Cancer Res. 1995 Sep;86(9):802–810. doi: 10.1111/j.1349-7006.1995.tb03089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  8. Monforte J. A., Becker C. H. High-throughput DNA analysis by time-of-flight mass spectrometry. Nat Med. 1997 Mar;3(3):360–362. doi: 10.1038/nm0397-360. [DOI] [PubMed] [Google Scholar]
  9. Ross P. L., Belgrader P. Analysis of short tandem repeat polymorphisms in human DNA by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 1997 Oct 1;69(19):3966–3972. doi: 10.1021/ac970312t. [DOI] [PubMed] [Google Scholar]
  10. Smith L. M. The future of DNA sequencing. Science. 1993 Oct 22;262(5133):530–532. doi: 10.1126/science.8211178. [DOI] [PubMed] [Google Scholar]
  11. Wilson J. T., Marotta C. A., Forget B. G., Weissman S. M. Structure of human hemoglobin messenger RNA and its relation to hemoglobinopathies. Trans Assoc Am Physicians. 1977;90:117–126. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES