Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 1;26(11):2679–2685. doi: 10.1093/nar/26.11.2679

Conformational properties of DNA dodecamers containing four tandem repeats of the CNG triplets.

M Vorlícková 1, M Zimulová 1, J Kovanda 1, P Fojtík 1, J Kypr 1
PMCID: PMC147616  PMID: 9592154

Abstract

We studied DNA dodecamers (CAG)4, (CCG)4, (CGG)4 and (CTG)4by CD spectroscopy and polyacrylamide gel electrophoresis. Each dodecamer adopted several ordered conformers which denatured in a cooperative way. Stability of the conformers depended on the dodecamer concentration, ionic strength, temperature and pH. The dodecamers, having a pyrimidine base in the triplet center, generated foldbacks at low ionic strength whose stem conformations were governed by the GC pairs. At high salt, (CCG)4 isomerized into a peculiar association of two strands. The association was also promoted by high oligonucleotide concentrations. No similar behavior was exhibited by (CTG)4. At low salt, (CGG)4 coexisted in two bimolecular conformers whose populations were strongly dependent on the ionic strength. In addition, (CGG)4 associated into a tetraplex at acidic pH. A tetraplex was even observed at neutral pH if the (CGG)4 concentration was sufficiently high. (CAG)4 was very stable in a monomolecular conformer similar to the known extremely stable foldback of the (GCGAAGC) heptamer. Nevertheless, even this very stable conformer disappeared if (CTG)4 was added to the solution of (CAG)4. Association of the complementary strands was also strongly preferred to the particular strand conformations by the other couple, (CCG)4 and (CGG)4.

Full Text

The Full Text of this article is available as a PDF (191.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antao V. P., Gray D. M. CD spectral comparisons of the acid-induced structures of poly[d(A)], poly[r(A)], poly[d(C)], and poly[r(C)]. J Biomol Struct Dyn. 1993 Apr;10(5):819–839. doi: 10.1080/07391102.1993.10508677. [DOI] [PubMed] [Google Scholar]
  2. Ashley C. T., Jr, Warren S. T. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995;29:703–728. doi: 10.1146/annurev.ge.29.120195.003415. [DOI] [PubMed] [Google Scholar]
  3. Bacolla A., Gellibolian R., Shimizu M., Amirhaeri S., Kang S., Ohshima K., Larson J. E., Harvey S. C., Stollar B. D., Wells R. D. Flexible DNA: genetically unstable CTG.CAG and CGG.CCG from human hereditary neuromuscular disease genes. J Biol Chem. 1997 Jul 4;272(27):16783–16792. doi: 10.1074/jbc.272.27.16783. [DOI] [PubMed] [Google Scholar]
  4. Chen F. M. Acid-facilitated supramolecular assembly of G-quadruplexes in d(CGG)4. J Biol Chem. 1995 Sep 29;270(39):23090–23096. doi: 10.1074/jbc.270.39.23090. [DOI] [PubMed] [Google Scholar]
  5. Chen F. M. Supramolecular self-assembly of d(TGG)4, synergistic effects of K+ and Mg2+. Biophys J. 1997 Jul;73(1):348–356. doi: 10.1016/S0006-3495(97)78075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fry M., Loeb L. A. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4950–4954. doi: 10.1073/pnas.91.11.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gehring K., Leroy J. L., Guéron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993 Jun 10;363(6429):561–565. doi: 10.1038/363561a0. [DOI] [PubMed] [Google Scholar]
  8. Gray D. M., Hung S. H., Johnson K. H. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. doi: 10.1016/0076-6879(95)46005-5. [DOI] [PubMed] [Google Scholar]
  9. Han J., Hsu C., Zhu Z., Longshore J. W., Finley W. H. Over-representation of the disease associated (CAG) and (CGG) repeats in the human genome. Nucleic Acids Res. 1994 May 11;22(9):1735–1740. doi: 10.1093/nar/22.9.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 1997 Jun 15;25(12):2245–2254. doi: 10.1093/nar/25.12.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mitas M., Yu A., Dill J., Haworth I. S. The trinucleotide repeat sequence d(CGG)15 forms a heat-stable hairpin containing Gsyn. Ganti base pairs. Biochemistry. 1995 Oct 3;34(39):12803–12811. doi: 10.1021/bi00039a041. [DOI] [PubMed] [Google Scholar]
  12. Mitchell J. E., Newbury S. F., McClellan J. A. Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to fragile X and related human genetic diseases. Nucleic Acids Res. 1995 Jun 11;23(11):1876–1881. doi: 10.1093/nar/23.11.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pearson C. E., Sinden R. R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry. 1996 Apr 16;35(15):5041–5053. doi: 10.1021/bi9601013. [DOI] [PubMed] [Google Scholar]
  14. Penázová H., Vorlicková M. Guanine tetraplex formation by short DNA fragments containing runs of guanine and cytosine. Biophys J. 1997 Oct;73(4):2054–2063. doi: 10.1016/S0006-3495(97)78235-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richards R. I., Sutherland G. R. Dynamic mutation: possible mechanisms and significance in human disease. Trends Biochem Sci. 1997 Nov;22(11):432–436. doi: 10.1016/s0968-0004(97)01108-0. [DOI] [PubMed] [Google Scholar]
  16. Rippe K., Fritsch V., Westhof E., Jovin T. M. Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J. 1992 Oct;11(10):3777–3786. doi: 10.1002/j.1460-2075.1992.tb05463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tautz D., Trick M., Dover G. A. Cryptic simplicity in DNA is a major source of genetic variation. Nature. 1986 Aug 14;322(6080):652–656. doi: 10.1038/322652a0. [DOI] [PubMed] [Google Scholar]
  18. Usdin K., Woodford K. J. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res. 1995 Oct 25;23(20):4202–4209. doi: 10.1093/nar/23.20.4202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vorlícková M., Kypr J. Conformational variability of poly(dA-dT).poly(dA-dT) and some other deoxyribonucleic acids includes a novel type of double helix. J Biomol Struct Dyn. 1985 Aug;3(1):67–83. doi: 10.1080/07391102.1985.10508399. [DOI] [PubMed] [Google Scholar]
  20. Wells R. D. Molecular basis of genetic instability of triplet repeats. J Biol Chem. 1996 Feb 9;271(6):2875–2878. doi: 10.1074/jbc.271.6.2875. [DOI] [PubMed] [Google Scholar]
  21. Yoshizawa S., Kawai G., Watanabe K., Miura K., Hirao I. GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. Biochemistry. 1997 Apr 22;36(16):4761–4767. doi: 10.1021/bi961738p. [DOI] [PubMed] [Google Scholar]
  22. Yu A., Barron M. D., Romero R. M., Christy M., Gold B., Dai J., Gray D. M., Haworth I. S., Mitas M. At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix. Biochemistry. 1997 Mar 25;36(12):3687–3699. doi: 10.1021/bi9625410. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES