Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 15;26(12):2917–2922. doi: 10.1093/nar/26.12.2917

Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage.

M Takao 1, H Aburatani 1, K Kobayashi 1, A Yasui 1
PMCID: PMC147628  PMID: 9611236

Abstract

Oxidative damage to mitochondrial DNA has been implicated in human degenerative diseases and aging. Although removal of oxidative lesions from mitochondrial DNA occurs, the responsible DNA repair enzymes are poorly understood. By expressing the epitope-tagged proteins in COS-7 cells, we examined subcellular localizations of gene products of human DNA glycosylases: hOGG1, hMYH and hNTH1. A gene encoding for hOGG1 which excises 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA generates four isoforms by alternative splicing (types 1a, 1b, 1c and 2). Three tagged isoforms (types 1b, 1c and 2) were localized in the mitochondria. Type 1a protein, which exclusively contains a putative nuclear localization signal, was sorted to the nucleus and lesser amount to the mitochondria. hMYH, a human homolog gene product of Escherichia coli mutY was mainly transported into the mitochondria. hNTH1 protein excising several pyrimidine lesions was transported into both the nucleus and mitochondria. In contrast to the three DNA glycosylases, translocation of the human major AP endonuclease (hAPE) into the mitochondria was hardly observed in COS-7 cells. These results suggest that the previously observed removal of oxidative base lesions in mitochondrial DNA is initiated by the above DNA glycosylases.

Full Text

The Full Text of this article is available as a PDF (919.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aburatani H., Hippo Y., Ishida T., Takashima R., Matsuba C., Kodama T., Takao M., Yasui A., Yamamoto K., Asano M. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997 Jun 1;57(11):2151–2156. [PubMed] [Google Scholar]
  2. Arai K., Morishita K., Shinmura K., Kohno T., Kim S. R., Nohmi T., Taniwaki M., Ohwada S., Yokota J. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997 Jun 12;14(23):2857–2861. doi: 10.1038/sj.onc.1201139. [DOI] [PubMed] [Google Scholar]
  3. Aspinwall R., Rothwell D. G., Roldan-Arjona T., Anselmino C., Ward C. J., Cheadle J. P., Sampson J. R., Lindahl T., Harris P. C., Hickson I. D. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):109–114. doi: 10.1073/pnas.94.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bjorâs M., Luna L., Johnsen B., Hoff E., Haug T., Rognes T., Seeberg E. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 1997 Oct 15;16(20):6314–6322. doi: 10.1093/emboj/16.20.6314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boiteux S. Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two DNA glycosylases that repair oxidative damage in DNA. J Photochem Photobiol B. 1993 Jul;19(2):87–96. doi: 10.1016/1011-1344(93)87101-r. [DOI] [PubMed] [Google Scholar]
  6. Croteau D. L., ap Rhys C. M., Hudson E. K., Dianov G. L., Hansford R. G., Bohr V. A. An oxidative damage-specific endonuclease from rat liver mitochondria. J Biol Chem. 1997 Oct 24;272(43):27338–27344. doi: 10.1074/jbc.272.43.27338. [DOI] [PubMed] [Google Scholar]
  7. Croteau D. L., ap Rhys C. M., Hudson E. K., Dianov G. L., Hansford R. G., Bohr V. A. An oxidative damage-specific endonuclease from rat liver mitochondria. J Biol Chem. 1997 Oct 24;272(43):27338–27344. doi: 10.1074/jbc.272.43.27338. [DOI] [PubMed] [Google Scholar]
  8. Demple B., Herman T., Chen D. S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11450–11454. doi: 10.1073/pnas.88.24.11450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Driggers W. J., Holmquist G. P., LeDoux S. P., Wilson G. L. Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA. Nucleic Acids Res. 1997 Nov 1;25(21):4362–4369. doi: 10.1093/nar/25.21.4362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Driggers W. J., LeDoux S. P., Wilson G. L. Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J Biol Chem. 1993 Oct 15;268(29):22042–22045. [PubMed] [Google Scholar]
  11. Duguid J. R., Eble J. N., Wilson T. M., Kelley M. R. Differential cellular and subcellular expression of the human multifunctional apurinic/apyrimidinic endonuclease (APE/ref-1) DNA repair enzyme. Cancer Res. 1995 Dec 15;55(24):6097–6102. [PubMed] [Google Scholar]
  12. Grossman L. I., Shoubridge E. A. Mitochondrial genetics and human disease. Bioessays. 1996 Dec;18(12):983–991. doi: 10.1002/bies.950181208. [DOI] [PubMed] [Google Scholar]
  13. Hilbert T. P., Chaung W., Boorstein R. J., Cunningham R. P., Teebor G. W. Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J Biol Chem. 1997 Mar 7;272(10):6733–6740. doi: 10.1074/jbc.272.10.6733. [DOI] [PubMed] [Google Scholar]
  14. Kakolyris S., Kaklamanis L., Engels K., Turley H., Hickson I. D., Gatter K. C., Harris A. L. Human apurinic endonuclease 1 expression in a colorectal adenoma-carcinoma sequence. Cancer Res. 1997 May 1;57(9):1794–1797. [PubMed] [Google Scholar]
  15. Kang D., Nishida J., Iyama A., Nakabeppu Y., Furuichi M., Fujiwara T., Sekiguchi M., Takeshige K. Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J Biol Chem. 1995 Jun 16;270(24):14659–14665. doi: 10.1074/jbc.270.24.14659. [DOI] [PubMed] [Google Scholar]
  16. Karahalil B., Girard P. M., Boiteux S., Dizdaroglu M. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Nucleic Acids Res. 1998 Mar 1;26(5):1228–1233. doi: 10.1093/nar/26.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klungland A., Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997 Jun 2;16(11):3341–3348. doi: 10.1093/emboj/16.11.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsumoto Y., Kim K., Bogenhagen D. F. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol Cell Biol. 1994 Sep;14(9):6187–6197. doi: 10.1128/mcb.14.9.6187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McGoldrick J. P., Yeh Y. C., Solomon M., Essigmann J. M., Lu A. L. Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol Cell Biol. 1995 Feb;15(2):989–996. doi: 10.1128/mcb.15.2.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nagelhus T. A., Slupphaug G., Lindmo T., Krokan H. E. Cell cycle regulation and subcellular localization of the major human uracil-DNA glycosylase. Exp Cell Res. 1995 Oct;220(2):292–297. doi: 10.1006/excr.1995.1318. [DOI] [PubMed] [Google Scholar]
  21. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nash H. M., Bruner S. D., Schärer O. D., Kawate T., Addona T. A., Spooner E., Lane W. S., Verdine G. L. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996 Aug 1;6(8):968–980. doi: 10.1016/s0960-9822(02)00641-3. [DOI] [PubMed] [Google Scholar]
  23. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
  24. Nilsen H., Otterlei M., Haug T., Solum K., Nagelhus T. A., Skorpen F., Krokan H. E. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 1997 Feb 15;25(4):750–755. doi: 10.1093/nar/25.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pinz K. G., Bogenhagen D. F. Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol Cell Biol. 1998 Mar;18(3):1257–1265. doi: 10.1128/mcb.18.3.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Radicella J. P., Dherin C., Desmaze C., Fox M. S., Boiteux S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8010–8015. doi: 10.1073/pnas.94.15.8010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reardon J. T., Bessho T., Kung H. C., Bolton P. H., Sancar A. In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9463–9468. doi: 10.1073/pnas.94.17.9463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roldán-Arjona T., Wei Y. F., Carter K. C., Klungland A., Anselmino C., Wang R. P., Augustus M., Lindahl T. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8016–8020. doi: 10.1073/pnas.94.15.8016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosenquist T. A., Zharkov D. O., Grollman A. P. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7429–7434. doi: 10.1073/pnas.94.14.7429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H., Sekiguchi M. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem. 1993 Nov 5;268(31):23524–23530. [PubMed] [Google Scholar]
  31. Slupphaug G., Markussen F. H., Olsen L. C., Aasland R., Aarsaether N., Bakke O., Krokan H. E., Helland D. E. Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res. 1993 Jun 11;21(11):2579–2584. doi: 10.1093/nar/21.11.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Slupska M. M., Baikalov C., Luther W. M., Chiang J. H., Wei Y. F., Miller J. H. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bacteriol. 1996 Jul;178(13):3885–3892. doi: 10.1128/jb.178.13.3885-3892.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taffe B. G., Larminat F., Laval J., Croteau D. L., Anson R. M., Bohr V. A. Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mutat Res. 1996 Dec 2;364(3):183–192. doi: 10.1016/s0921-8777(96)00031-6. [DOI] [PubMed] [Google Scholar]
  34. Tajiri T., Maki H., Sekiguchi M. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. 1995 May;336(3):257–267. doi: 10.1016/0921-8777(94)00062-b. [DOI] [PubMed] [Google Scholar]
  35. Tomkinson A. E., Bonk R. T., Kim J., Bartfeld N., Linn S. Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res. 1990 Feb 25;18(4):929–935. doi: 10.1093/nar/18.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vidmar J. J., Cupples C. G. MutY repair is mutagenic in mutT- strains of Escherichia coli. Can J Microbiol. 1993 Sep;39(9):892–894. doi: 10.1139/m93-133. [DOI] [PubMed] [Google Scholar]
  37. Wei Y. H. Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med. 1998 Jan;217(1):53–63. doi: 10.3181/00379727-217-44205. [DOI] [PubMed] [Google Scholar]
  38. Xanthoudakis S., Miao G., Wang F., Pan Y. C., Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992 Sep;11(9):3323–3335. doi: 10.1002/j.1460-2075.1992.tb05411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yakes F. M., Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):514–519. doi: 10.1073/pnas.94.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zorov D. B. Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):10–15. doi: 10.1016/0005-2728(96)00042-4. [DOI] [PubMed] [Google Scholar]
  41. van der Kemp P. A., Thomas D., Barbey R., de Oliveira R., Boiteux S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5197–5202. doi: 10.1073/pnas.93.11.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES