Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 15;26(12):2865–2872. doi: 10.1093/nar/26.12.2865

Transcription of INO2 and INO4 is regulated by the state of protein N-myristoylation in Saccharomyces cerevisiae.

S J Cok 1, C G Martin 1, J I Gordon 1
PMCID: PMC147641  PMID: 9611229

Abstract

Inositol regulates transcription of Saccharomyces cerevisiae genes required for de novo synthesis of acylCoAs and phospholipids. Removal of inositol results in transcriptional activation by heterodimeric complexes of two bHLH proteins, Ino2p and Ino4p. In the presence of inositol, transcription is repressed by Opi1p. MyristoylCoA:protein N-myristoyltransferase (Nmt1p) is an essential enzyme whose activity is influenced by cellular myristoylCoA pool size and availability. nmt451Dp contains a Gly451-->Asp substitution that produces temperature-dependent reductions in affinity for myristoylCoA and associated reductions in acylation of cellular N-myristoylproteins. The conditional lethality produced by nmt1-451D is rescued at temperatures up to 33 degreesC by withdrawal of inositol. We tested the hypothesis that N-myristoylproteins function to regulate INO2, INO4 and/or OPI1 transcription, thereby affecting the expression of inositol-sensitive genes that influence myristoylCoA metabolism. The effect of nmt1-451D on INO2 , INO4 and OPI1 promoter activities was examined by introducing episomes, containing their 5' non-transcribed domains linked to reporters, into isogenic NMT1 and nmt1-451D cells. The activity of INO2 is significantly higher, INO4 significantly lower and OPI1 unaffected in nmt1-451D cells, both in the presence and absence of inositol. These changes are associated with a net increase in expression of some inositol target genes, including FAS1 . FAS1 encodes one of the subunits of the fatty acid synthase complex that catalyzes de novo acylCoA (including myristoylCoA) biosynthesis. Augmented expression of FAS1 overcomes the kinetic defects in nmt451Dp. FAS1 expression is Ino2p-dependent in NMT1 cells at 24-33 degreesC. In contrast, FAS1 expression becomes Ino2p-independent in nmt1-451D cells at temperatures where efficient acylation of cellular N-myristoylproteins is jeopardized. The ability to maintain expression of FAS1 in nmt1-451Dino2 Delta cells suggests the existence of another transcription factor, or factors, whose expression/activity is inversely related to overall levels of cellular protein N-myristoy-lation. This factor is not functionally identical to Ino2p since other inositol-responsive genes (e.g. CHO1 ) maintain INO2 -dependent expression in nmt1-451D cells.

Full Text

The Full Text of this article is available as a PDF (240.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashburner B. P., Lopes J. M. Autoregulated expression of the yeast INO2 and INO4 helix-loop-helix activator genes effects cooperative regulation on their target genes. Mol Cell Biol. 1995 Mar;15(3):1709–1715. doi: 10.1128/mcb.15.3.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashburner B. P., Lopes J. M. Regulation of yeast phospholipid biosynthetic gene expression in response to inositol involves two superimposed mechanisms. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9722–9726. doi: 10.1073/pnas.92.21.9722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachhawat N., Ouyang Q., Henry S. A. Functional characterization of an inositol-sensitive upstream activation sequence in yeast. A cis-regulatory element responsible for inositol-choline mediated regulation of phospholipid biosynthesis. J Biol Chem. 1995 Oct 20;270(42):25087–25095. doi: 10.1074/jbc.270.42.25087. [DOI] [PubMed] [Google Scholar]
  4. Bailis A. M., Lopes J. M., Kohlwein S. D., Henry S. A. Cis and trans regulatory elements required for regulation of the CHO1 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 1992 Mar 25;20(6):1411–1418. doi: 10.1093/nar/20.6.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Jul 11;21(14):3329–3330. doi: 10.1093/nar/21.14.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bhatnagar R. S., Schall O. F., Jackson-Machelski E., Sikorski J. A., Devadas B., Gokel G. W., Gordon J. I. Titration calorimetric analysis of AcylCoA recognition by myristoylCoA:protein N-myristoyltransferase. Biochemistry. 1997 Jun 3;36(22):6700–6708. doi: 10.1021/bi970311v. [DOI] [PubMed] [Google Scholar]
  7. Chirala S. S. Coordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10232–10236. doi: 10.1073/pnas.89.21.10232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chirala S. S., Zhong Q., Huang W., al-Feel W. Analysis of FAS3/ACC regulatory region of Saccharomyces cerevisiae: identification of a functional UASINO and sequences responsible for fatty acid mediated repression. Nucleic Acids Res. 1994 Feb 11;22(3):412–418. doi: 10.1093/nar/22.3.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duronio R. J., Rudnick D. A., Adams S. P., Towler D. A., Gordon J. I. Analyzing the substrate specificity of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase by co-expressing it with mammalian G protein alpha subunits in Escherichia coli. J Biol Chem. 1991 Jun 5;266(16):10498–10504. [PubMed] [Google Scholar]
  10. Duronio R. J., Rudnick D. A., Johnson R. L., Johnson D. R., Gordon J. I. Myristic acid auxotrophy caused by mutation of S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Cell Biol. 1991 Jun;113(6):1313–1330. doi: 10.1083/jcb.113.6.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duronio R. J., Towler D. A., Heuckeroth R. O., Gordon J. I. Disruption of the yeast N-myristoyl transferase gene causes recessive lethality. Science. 1989 Feb 10;243(4892):796–800. doi: 10.1126/science.2644694. [DOI] [PubMed] [Google Scholar]
  12. Eustice D. C., Feldman P. A., Colberg-Poley A. M., Buckery R. M., Neubauer R. H. A sensitive method for the detection of beta-galactosidase in transfected mammalian cells. Biotechniques. 1991 Dec;11(6):739-40, 742-3. [PubMed] [Google Scholar]
  13. Greenberg M. L., Lopes J. M. Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1996 Mar;60(1):1–20. doi: 10.1128/mr.60.1.1-20.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hasslacher M., Ivessa A. S., Paltauf F., Kohlwein S. D. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem. 1993 May 25;268(15):10946–10952. [PubMed] [Google Scholar]
  15. Hirsch J. P., Henry S. A. Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol Cell Biol. 1986 Oct;6(10):3320–3328. doi: 10.1128/mcb.6.10.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  17. Jackson J. C., Lopes J. M. The yeast UME6 gene is required for both negative and positive transcriptional regulation of phospholipid biosynthetic gene expression. Nucleic Acids Res. 1996 Apr 1;24(7):1322–1329. doi: 10.1093/nar/24.7.1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson D. R., Cok S. J., Feldmann H., Gordon J. I. Suppressors of nmtl-181, a conditional lethal allele of the Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase gene, reveal proteins involved in regulating protein N-myristoylation. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10158–10162. doi: 10.1073/pnas.91.21.10158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson D. R., Knoll L. J., Levin D. E., Gordon J. I. Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. J Cell Biol. 1994 Nov;127(3):751–762. doi: 10.1083/jcb.127.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lamping E., Lückl J., Paltauf F., Henry S. A., Kohlwein S. D. Isolation and characterization of a mutant of Saccharomyces cerevisiae with pleiotropic deficiencies in transcriptional activation and repression. Genetics. 1994 May;137(1):55–65. doi: 10.1093/genetics/137.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lodge J. K., Jackson-Machelski E., Devadas B., Zupec M. E., Getman D. P., Kishore N., Freeman S. K., McWherter C. A., Sikorski J. A., Gordon J. I. N-myristoylation of Arf proteins in Candida albicans: an in vivo assay for evaluating antifungal inhibitors of myristoyl-CoA: protein N-myristoyltransferase. Microbiology. 1997 Feb;143(Pt 2):357–366. doi: 10.1099/00221287-143-2-357. [DOI] [PubMed] [Google Scholar]
  22. Nikoloff D. M., Henry S. A. Functional characterization of the INO2 gene of Saccharomyces cerevisiae. A positive regulator of phospholipid biosynthesis. J Biol Chem. 1994 Mar 11;269(10):7402–7411. [PubMed] [Google Scholar]
  23. Rudnick D. A., McWherter C. A., Rocque W. J., Lennon P. J., Getman D. P., Gordon J. I. Kinetic and structural evidence for a sequential ordered Bi Bi mechanism of catalysis by Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Biol Chem. 1991 May 25;266(15):9732–9739. [PubMed] [Google Scholar]
  24. Rudnick D. A., Rocque W. J., McWherter C. A., Toth M. V., Jackson-Machelski E., Gordon J. I. Use of photoactivatable peptide substrates of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p) to characterize a myristoyl-CoA-Nmt1p-peptide ternary complex and to provide evidence for an ordered reaction mechanism. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1087–1091. doi: 10.1073/pnas.90.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schjerling C. K., Hummel R., Hansen J. K., Borsting C., Mikkelsen J. M., Kristiansen K., Knudsen J. Disruption of the gene encoding the acyl-CoA-binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae. J Biol Chem. 1996 Sep 13;271(37):22514–22521. doi: 10.1074/jbc.271.37.22514. [DOI] [PubMed] [Google Scholar]
  26. Schwank S., Ebbert R., Rautenstrauss K., Schweizer E., Schüller H. J. Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res. 1995 Jan 25;23(2):230–237. doi: 10.1093/nar/23.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schweizer E., Werkmeister K., Jain M. K. Fatty acid biosynthesis in yeast. Mol Cell Biochem. 1978 Nov 1;21(2):95–107. doi: 10.1007/BF00240280. [DOI] [PubMed] [Google Scholar]
  28. Schüller H. J., Förtsch B., Rautenstrauss B., Wolf D. H., Schweizer E. Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components. Eur J Biochem. 1992 Feb 1;203(3):607–614. doi: 10.1111/j.1432-1033.1992.tb16590.x. [DOI] [PubMed] [Google Scholar]
  29. Schüller H. J., Hahn A., Tröster F., Schütz A., Schweizer E. Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J. 1992 Jan;11(1):107–114. doi: 10.1002/j.1460-2075.1992.tb05033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schüller H. J., Schütz A., Knab S., Hoffmann B., Schweizer E. Importance of general regulatory factors Rap1p, Abf1p and Reb1p for the activation of yeast fatty acid synthase genes FAS1 and FAS2. Eur J Biochem. 1994 Oct 1;225(1):213–222. doi: 10.1111/j.1432-1033.1994.00213.x. [DOI] [PubMed] [Google Scholar]
  31. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  32. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Slekar K. H., Henry S. A. SIN3 works through two different promoter elements to regulate INO1 gene expression in yeast. Nucleic Acids Res. 1995 Jun 11;23(11):1964–1969. doi: 10.1093/nar/23.11.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Towler D. A., Adams S. P., Eubanks S. R., Towery D. S., Jackson-Machelski E., Glaser L., Gordon J. I. Myristoyl CoA:protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificities. J Biol Chem. 1988 Feb 5;263(4):1784–1790. [PubMed] [Google Scholar]
  35. Towler D. A., Adams S. P., Eubanks S. R., Towery D. S., Jackson-Machelski E., Glaser L., Gordon J. I. Purification and characterization of yeast myristoyl CoA:protein N-myristoyltransferase. Proc Natl Acad Sci U S A. 1987 May;84(9):2708–2712. doi: 10.1073/pnas.84.9.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weston S. A., Camble R., Colls J., Rosenbrock G., Taylor I., Egerton M., Tucker A. D., Tunnicliffe A., Mistry A., Mancia F. Crystal structure of the anti-fungal target N-myristoyl transferase. Nat Struct Biol. 1998 Mar;5(3):213–221. doi: 10.1038/nsb0398-213. [DOI] [PubMed] [Google Scholar]
  37. White M. J., Hirsch J. P., Henry S. A. The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem. 1991 Jan 15;266(2):863–872. [PubMed] [Google Scholar]
  38. Zhang L., Jackson-Machelski E., Gordon J. I. Biochemical studies of Saccharomyces cerevisiae myristoyl-coenzyme A:protein N-myristoyltransferase mutants. J Biol Chem. 1996 Dec 20;271(51):33131–33140. doi: 10.1074/jbc.271.51.33131. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES