Abstract
Free solution capillary electrophoresis (FSCE) has been used to separate two non-self-complementary 12mer oligonucleotide duplexes: d(AAATTATATTAT).d(ATAA-TATAATTT) and d(GGGCCGCGCCGC).d(GCGGCGCGGCCC). Titration of mixtures of the two oligonucleotides with model intercalators (ethidium bromide andactinomycin D) and minor groove binders (netropsin, Hoechst 33258 and distamycin) has shown the suitability of FSCE as a method to study the sequence selectivity of DNA binding agents. Binding data have shown cooperativity of binding for netropsin and Hoechst 33258 and have provided ligand:DNA binding ratios for all five compounds. Cooperativity of netropsin binding to a 12mer with two potential sites has been demonstrated for the first time. Ligands binding in the minor groove caused changes in migration time and peak shape which were significantly different from those caused by intercalators.
Full Text
The Full Text of this article is available as a PDF (83.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abu-Daya A., Brown P. M., Fox K. R. DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Res. 1995 Sep 11;23(17):3385–3392. doi: 10.1093/nar/23.17.3385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baba Y., Tsuhako M., Sawa T., Akashi M., Yashima E. Specific base recognition of oligodeoxynucleotides by capillary affinity gel electrophoresis using polyacrylamide-poly(9-vinyladenine) conjugated gel. Anal Chem. 1992 Sep 1;64(17):1920–1925. doi: 10.1021/ac00041a029. [DOI] [PubMed] [Google Scholar]
- Coll M., Frederick C. A., Wang A. H., Rich A. A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8385–8389. doi: 10.1073/pnas.84.23.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dougherty G., Pigram W. J. Spectroscopic analysis of drug-nucleic acid interactions. CRC Crit Rev Biochem. 1982 Feb;12(2):103–132. doi: 10.3109/10409238209108704. [DOI] [PubMed] [Google Scholar]
- Fox K. R., Waring M. J., Brown J. R., Neidle S. DNA sequence preferences for the anti-cancer drug mitoxanthrone and related anthraquinones revealed by DNase I footprinting. FEBS Lett. 1986 Jul 7;202(2):289–294. doi: 10.1016/0014-5793(86)80703-7. [DOI] [PubMed] [Google Scholar]
- Fox K. R., Waring M. J. Footprinting at low temperatures: evidence that ethidium and other simple intercalators can discriminate between different nucleotide sequences. Nucleic Acids Res. 1987 Jan 26;15(2):491–507. doi: 10.1093/nar/15.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galas D. J., Schmitz A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 1978 Sep;5(9):3157–3170. doi: 10.1093/nar/5.9.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodisman J., Rehfuss R., Ward B., Dabrowiak J. C. Site-specific binding constants for actinomycin D on DNA determined from footprinting studies. Biochemistry. 1992 Feb 4;31(4):1046–1058. doi: 10.1021/bi00119a013. [DOI] [PubMed] [Google Scholar]
- Guttman A., Cooke N. Capillary gel affinity electrophoresis of DNA fragments. Anal Chem. 1991 Sep 15;63(18):2038–2042. doi: 10.1021/ac00018a027. [DOI] [PubMed] [Google Scholar]
- Hamdan I. I., Skellern G. G., Waigh R. D. Separation of pd(GC)12 from pd(AT)12 by free solution capillary electrophoresis. J Chromatogr A. 1998 May 8;806(1):165–168. doi: 10.1016/s0021-9673(97)00504-9. [DOI] [PubMed] [Google Scholar]
- Heegaard N. H. Determination of antigen-antibody affinity by immunocapillary electrophoresis. J Chromatogr A. 1994 Oct 7;680(2):405–412. doi: 10.1016/0021-9673(94)85136-0. [DOI] [PubMed] [Google Scholar]
- Klevit R. E., Wemmer D. E., Reid B. R. 1H NMR studies on the interaction between distamycin A and a symmetrical DNA dodecamer. Biochemistry. 1986 Jun 3;25(11):3296–3303. doi: 10.1021/bi00359a032. [DOI] [PubMed] [Google Scholar]
- Kraak J. C., Busch S., Poppe H. Study of protein-drug binding using capillary zone electrophoresis. J Chromatogr. 1992 Sep 11;608(1-2):257–264. doi: 10.1016/0021-9673(92)87132-r. [DOI] [PubMed] [Google Scholar]
- Krugh T. R., Reinhardt C. G. Evidence for sequence preferences in the intercalative binding of ethidium bromide to dinucleoside monophosphates. J Mol Biol. 1975 Sep 15;97(2):133–162. doi: 10.1016/s0022-2836(75)80031-3. [DOI] [PubMed] [Google Scholar]
- Lane M. J., Dabrowiak J. C., Vournakis J. N. Sequence specificity of actinomycin D and Netropsin binding to pBR322 DNA analyzed by protection from DNase I. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3260–3264. doi: 10.1073/pnas.80.11.3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loontiens F. G., McLaughlin L. W., Diekmann S., Clegg R. M. Binding of Hoechst 33258 and 4',6'-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substituents. Biochemistry. 1991 Jan 8;30(1):182–189. doi: 10.1021/bi00215a027. [DOI] [PubMed] [Google Scholar]
- Luck G., Triebel H., Waring M., Zimmer C. Conformation dependent binding of netropsin and distamycin to DNA and DNA model polymers. Nucleic Acids Res. 1974 Mar;1(3):503–530. doi: 10.1093/nar/1.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulus A., Ohms J. I. Analysis of oligonucleotides by capillary gel electrophoresis. J Chromatogr. 1990 May 16;507:113–123. doi: 10.1016/s0021-9673(01)84187-x. [DOI] [PubMed] [Google Scholar]
- Pelton J. G., Wemmer D. E. Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5723–5727. doi: 10.1073/pnas.86.15.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rentzeperis D., Marky L. A., Dwyer T. J., Geierstanger B. H., Pelton J. G., Wemmer D. E. Interaction of minor groove ligands to an AAATT/AATTT site: correlation of thermodynamic characterization and solution structure. Biochemistry. 1995 Mar 7;34(9):2937–2945. doi: 10.1021/bi00009a025. [DOI] [PubMed] [Google Scholar]
- Scott E. V., Jones R. L., Banville D. L., Zon G., Marzilli L. G., Wilson W. D. 1H and 31P NMR investigations of actinomycin D binding selectivity with oligodeoxyribonucleotides containing multiple adjacent d(GC) sites. Biochemistry. 1988 Feb 9;27(3):915–923. doi: 10.1021/bi00403a012. [DOI] [PubMed] [Google Scholar]
- Searle M. S., Embrey K. J. Sequence-specific interaction of Hoechst 33258 with the minor groove of an adenine-tract DNA duplex studied in solution by 1H NMR spectroscopy. Nucleic Acids Res. 1990 Jul 11;18(13):3753–3762. doi: 10.1093/nar/18.13.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder J. G., Hartman N. G., D'Estantoit B. L., Kennard O., Remeta D. P., Breslauer K. J. Binding of actinomycin D to DNA: evidence for a nonclassical high-affinity binding mode that does not require GpC sites. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3968–3972. doi: 10.1073/pnas.86.11.3968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dyke M. W., Hertzberg R. P., Dervan P. B. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci U S A. 1982 Sep;79(18):5470–5474. doi: 10.1073/pnas.79.18.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterloh K., Fox K. R. Secondary (non-GpC) binding sites for actinomycin on DNA. Biochim Biophys Acta. 1992 Jul 15;1131(3):300–306. doi: 10.1016/0167-4781(92)90028-x. [DOI] [PubMed] [Google Scholar]
- Zimmer C., Reinert K. E., Luck G., Wähnert U., Löber G., Thrum H. Interaction of the oligopeptide antibiotics netropsin and distamycin A with nucleic acids. J Mol Biol. 1971 May 28;58(1):329–348. doi: 10.1016/0022-2836(71)90250-6. [DOI] [PubMed] [Google Scholar]