Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 15;26(12):2843–2848. doi: 10.1093/nar/26.12.2843

Non-homologous recombination mediated by Thermus aquaticus DNA polymerase I. Evidence supporting a copy choice mechanism.

P G Zaphiropoulos 1
PMCID: PMC147658  PMID: 9611226

Abstract

RT-PCR amplification of P450 2C6 from rat liver, using primers in opposite orientations of exon 6, resulted in PCR products containing segments of exons joined at non-consensus splice sites. Moreover, many of the PCR products identified were composed of not only a single region containing exonic segments joined at non-consensus splice sites but, instead, of several repeats of the non-canonically joined region. To investigate whether these PCR products represent pre-existing molecules or are generated during the amplification process, the liver cDNA template was replaced by a plasmid containing the P450 2C6 cDNA. Surprisingly, PCR products containing repeats of non-canonically joined exonic segments were again revealed. In some cases the position of this non-canonical joining was a sequence of one or two identical nucleotides; however, there were also a number of products lacking any nucleotide identity at the position of joining. DNA nicking and/or DNA damage is thought to favour recombination during PCR, probably by misalignment of incomplete DNA strands; however, the presence of multiple repeats of the recombined region in the PCR products identified suggests a certain repetitiveness of the underlying mechanism. It is therefore proposed that these products result from a template switching event that occurs several times during a single polymerization step, following a rolling circle model of DNA synthesis.

Full Text

The Full Text of this article is available as a PDF (141.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res. 1996 Mar 15;24(6):1015–1019. doi: 10.1093/nar/24.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braun S., Domdey H., Wiebauer K. Inverse splicing of a discontinuous pre-mRNA intron generates a circular exon in a HeLa cell nuclear extract. Nucleic Acids Res. 1996 Nov 1;24(21):4152–4157. doi: 10.1093/nar/24.21.4152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Canceill D., Ehrlich S. D. Copy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6647–6652. doi: 10.1073/pnas.93.13.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capel B., Swain A., Nicolis S., Hacker A., Walter M., Koopman P., Goodfellow P., Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993 Jun 4;73(5):1019–1030. doi: 10.1016/0092-8674(93)90279-y. [DOI] [PubMed] [Google Scholar]
  5. Chetverin A. B., Chetverina H. V., Demidenko A. A., Ugarov V. I. Nonhomologous RNA recombination in a cell-free system: evidence for a transesterification mechanism guided by secondary structure. Cell. 1997 Feb 21;88(4):503–513. doi: 10.1016/S0092-8674(00)81890-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cocquerelle C., Daubersies P., Majérus M. A., Kerckaert J. P., Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 1992 Mar;11(3):1095–1098. doi: 10.1002/j.1460-2075.1992.tb05148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cocquerelle C., Mascrez B., Hétuin D., Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993 Jan;7(1):155–160. doi: 10.1096/fasebj.7.1.7678559. [DOI] [PubMed] [Google Scholar]
  9. Deirdre A., Scadden J., Smith C. W. Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. EMBO J. 1995 Jul 3;14(13):3236–3246. doi: 10.1002/j.1460-2075.1995.tb07326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dietrich R. C., Incorvaia R., Padgett R. A. Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol Cell. 1997 Dec;1(1):151–160. doi: 10.1016/s1097-2765(00)80016-7. [DOI] [PubMed] [Google Scholar]
  11. Gordenin D. A., Malkova A. L., Peterzen A., Kulikov V. N., Pavlov Y. I., Perkins E., Resnick M. A. Transposon Tn5 excision in yeast: influence of DNA polymerases alpha, delta, and epsilon and repair genes. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3785–3789. doi: 10.1073/pnas.89.9.3785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall S. L., Padgett R. A. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science. 1996 Mar 22;271(5256):1716–1718. doi: 10.1126/science.271.5256.1716. [DOI] [PubMed] [Google Scholar]
  13. Jansen R., Ledley F. D. Disruption of phase during PCR amplification and cloning of heterozygous target sequences. Nucleic Acids Res. 1990 Sep 11;18(17):5153–5156. doi: 10.1093/nar/18.17.5153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MESELSON M., WEIGLE J. J. Chromosome brekage accompanying genetic recombination in bacteriophage. Proc Natl Acad Sci U S A. 1961 Jun 15;47:857–868. doi: 10.1073/pnas.47.6.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Madsen C. S., Ghivizzani S. C., Hauswirth W. W. In vivo and in vitro evidence for slipped mispairing in mammalian mitochondria. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7671–7675. doi: 10.1073/pnas.90.16.7671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marton A., Delbecchi L., Bourgaux P. DNA nicking favors PCR recombination. Nucleic Acids Res. 1991 May 11;19(9):2423–2426. doi: 10.1093/nar/19.9.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meyerhans A., Vartanian J. P., Wain-Hobson S. DNA recombination during PCR. Nucleic Acids Res. 1990 Apr 11;18(7):1687–1691. doi: 10.1093/nar/18.7.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mikheeva S., Hakim-Zargar M., Carlson D., Jarrell K. Use of an engineered ribozyme to produce a circular human exon. Nucleic Acids Res. 1997 Dec 15;25(24):5085–5094. doi: 10.1093/nar/25.24.5085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Negroni M., Ricchetti M., Nouvel P., Buc H. Homologous recombination promoted by reverse transcriptase during copying of two distinct RNA templates. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6971–6975. doi: 10.1073/pnas.92.15.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nigro J. M., Cho K. R., Fearon E. R., Kern S. E., Ruppert J. M., Oliner J. D., Kinzler K. W., Vogelstein B. Scrambled exons. Cell. 1991 Feb 8;64(3):607–613. doi: 10.1016/0092-8674(91)90244-s. [DOI] [PubMed] [Google Scholar]
  22. Odelberg S. J., Weiss R. B., Hata A., White R. Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res. 1995 Jun 11;23(11):2049–2057. doi: 10.1093/nar/23.11.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Papanicolaou C., Ripley L. S. Polymerase-specific differences in the DNA intermediates of frameshift mutagenesis. In vitro synthesis errors of Escherichia coli DNA polymerase I and its large fragment derivative. J Mol Biol. 1989 May 20;207(2):335–353. doi: 10.1016/0022-2836(89)90258-1. [DOI] [PubMed] [Google Scholar]
  24. Parker R., Siliciano P. G. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature. 1993 Feb 18;361(6413):660–662. doi: 10.1038/361660a0. [DOI] [PubMed] [Google Scholar]
  25. Pasman Z., Been M. D., Garcia-Blanco M. A. Exon circularization in mammalian nuclear extracts. RNA. 1996 Jun;2(6):603–610. [PMC free article] [PubMed] [Google Scholar]
  26. Päbo S., Irwin D. M., Wilson A. C. DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem. 1990 Mar 15;265(8):4718–4721. [PubMed] [Google Scholar]
  27. Tarn W. Y., Steitz J. A. A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell. 1996 Mar 8;84(5):801–811. doi: 10.1016/s0092-8674(00)81057-0. [DOI] [PubMed] [Google Scholar]
  28. Tease C. Cytological detection of crossing-over in BUdR substituted meiotic chromosomes using the fluorescent plus Giemsa technique. Nature. 1978 Apr 27;272(5656):823–824. doi: 10.1038/272823a0. [DOI] [PubMed] [Google Scholar]
  29. Zaphiropoulos P. G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6536–6541. doi: 10.1073/pnas.93.13.6536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zaphiropoulos P. G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol. 1997 Jun;17(6):2985–2993. doi: 10.1128/mcb.17.6.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. d'Alençon E., Petranovic M., Michel B., Noirot P., Aucouturier A., Uzest M., Ehrlich S. D. Copy-choice illegitimate DNA recombination revisited. EMBO J. 1994 Jun 1;13(11):2725–2734. doi: 10.1002/j.1460-2075.1994.tb06563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES