Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jun 15;26(12):2963–2970. doi: 10.1093/nar/26.12.2963

The C-terminal domain but not the tyrosine 723 of human DNA topoisomerase I active site contributes to kinase activity.

F Rossi 1, E Labourier 1, I E Gallouzi 1, J Derancourt 1, E Allemand 1, G Divita 1, J Tazi 1
PMCID: PMC147659  PMID: 9611242

Abstract

Human DNA topoisomerase I not only has DNA relaxing activity, but also splicing factors phosphorylating activity. Topo I shows strong preference for ATP as the phosphate donor. We used photoaffinity labeling with the ATP analogue [alpha-32P] 8-azidoadenosine-5'-triphosphate combined with limited proteolysis to characterize Topo I domains involved in ATP binding. The majority of incorporated analogue was associated with two fragments derived from N-terminal and C-terminal regions of Topo I, respectively. However, mutational analysis showed that deletion of the first 138 N-terminal residues, known to be dispensable for topoisomerase activity, did not change the binding of ATP or the kinase activity. In contrast, deletion of 162 residues from the C-terminal domain was deleterious for ATP binding, kinase and topoisomerase activities. Furthermore, a C-terminal tyrosine 723 mutant lacking topoisomerase activity is still able to bind ATP and to phosphorylate SF2/ASF, suggesting that the two functions of Topo I can be separated. These findings argue in favor of the fact that Topo I is a complex enzyme with a number of potential intra-cellular functions.

Full Text

The Full Text of this article is available as a PDF (379.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Rudner D. Z., Rio D. C. Biochemistry and regulation of pre-mRNA splicing. Curr Opin Cell Biol. 1996 Jun;8(3):331–339. doi: 10.1016/s0955-0674(96)80006-8. [DOI] [PubMed] [Google Scholar]
  2. Alsner J., Svejstrup J. Q., Kjeldsen E., Sørensen B. S., Westergaard O. Identification of an N-terminal domain of eukaryotic DNA topoisomerase I dispensable for catalytic activity but essential for in vivo function. J Biol Chem. 1992 Jun 25;267(18):12408–12411. [PubMed] [Google Scholar]
  3. Amrein H., Hedley M. L., Maniatis T. The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. Cell. 1994 Feb 25;76(4):735–746. doi: 10.1016/0092-8674(94)90512-6. [DOI] [PubMed] [Google Scholar]
  4. Castaño I. B., Heath-Pagliuso S., Sadoff B. U., Fitzhugh D. J., Christman M. F. A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res. 1996 Jun 15;24(12):2404–2410. doi: 10.1093/nar/24.12.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colwill K., Pawson T., Andrews B., Prasad J., Manley J. L., Bell J. C., Duncan P. I. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 1996 Jan 15;15(2):265–275. [PMC free article] [PubMed] [Google Scholar]
  6. D'Arpa P., Machlin P. S., Ratrie H., 3rd, Rothfield N. F., Cleveland D. W., Earnshaw W. C. cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67.7-kDa carboxyl-terminal fragment. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2543–2547. doi: 10.1073/pnas.85.8.2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Divita G., Goody R. S., Gautheron D. C., Di Pietro A. Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer. J Biol Chem. 1993 Jun 25;268(18):13178–13186. [PubMed] [Google Scholar]
  8. Gui J. F., Lane W. S., Fu X. D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature. 1994 Jun 23;369(6482):678–682. doi: 10.1038/369678a0. [DOI] [PubMed] [Google Scholar]
  9. Gupta M., Fujimori A., Pommier Y. Eukaryotic DNA topoisomerases I. Biochim Biophys Acta. 1995 May 17;1262(1):1–14. doi: 10.1016/0167-4781(95)00029-g. [DOI] [PubMed] [Google Scholar]
  10. Jensen A. D., Svejstrup J. Q. Purification and characterization of human topoisomerase I mutants. Eur J Biochem. 1996 Mar 1;236(2):389–394. doi: 10.1111/j.1432-1033.1996.00389.x. [DOI] [PubMed] [Google Scholar]
  11. Krainer A. R., Mayeda A., Kozak D., Binns G. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell. 1991 Jul 26;66(2):383–394. doi: 10.1016/0092-8674(91)90627-b. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lee M. P., Brown S. D., Chen A., Hsieh T. S. DNA topoisomerase I is essential in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6656–6660. doi: 10.1073/pnas.90.14.6656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Madden K. R., Stewart L., Champoux J. J. Preferential binding of human topoisomerase I to superhelical DNA. EMBO J. 1995 Nov 1;14(21):5399–5409. doi: 10.1002/j.1460-2075.1995.tb00224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mermoud J. E., Cohen P. T., Lamond A. I. Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. EMBO J. 1994 Dec 1;13(23):5679–5688. doi: 10.1002/j.1460-2075.1994.tb06906.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morham S. G., Kluckman K. D., Voulomanos N., Smithies O. Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol Cell Biol. 1996 Dec;16(12):6804–6809. doi: 10.1128/mcb.16.12.6804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parker A. R., Steitz J. A. Inhibition of mammalian spliceosome assembly and pre-mRNA splicing by peptide inhibitors of protein kinases. RNA. 1997 Nov;3(11):1301–1312. [PMC free article] [PubMed] [Google Scholar]
  18. Rittinger K., Divita G., Goody R. S. Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8046–8049. doi: 10.1073/pnas.92.17.8046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rossi F., Labourier E., Forné T., Divita G., Derancourt J., Riou J. F., Antoine E., Cathala G., Brunel C., Tazi J. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature. 1996 May 2;381(6577):80–82. doi: 10.1038/381080a0. [DOI] [PubMed] [Google Scholar]
  20. Roth M. B., Zahler A. M., Stolk J. A. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J Cell Biol. 1991 Nov;115(3):587–596. doi: 10.1083/jcb.115.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sadoff B. U., Heath-Pagliuso S., Castaño I. B., Zhu Y., Kieff F. S., Christman M. F. Isolation of mutants of Saccharomyces cerevisiae requiring DNA topoisomerase I. Genetics. 1995 Oct;141(2):465–479. doi: 10.1093/genetics/141.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stewart L., Ireton G. C., Champoux J. J. The domain organization of human topoisomerase I. J Biol Chem. 1996 Mar 29;271(13):7602–7608. doi: 10.1074/jbc.271.13.7602. [DOI] [PubMed] [Google Scholar]
  23. Stewart L., Ireton G. C., Parker L. H., Madden K. R., Champoux J. J. Biochemical and biophysical analyses of recombinant forms of human topoisomerase I. J Biol Chem. 1996 Mar 29;271(13):7593–7601. doi: 10.1074/jbc.271.13.7593. [DOI] [PubMed] [Google Scholar]
  24. Tazi J., Daugeron M. C., Cathala G., Brunel C., Jeanteur P. Adenosine phosphorothioates (ATP alpha S and ATP tau S) differentially affect the two steps of mammalian pre-mRNA splicing. J Biol Chem. 1992 Mar 5;267(7):4322–4326. [PubMed] [Google Scholar]
  25. Tazi J., Kornstädt U., Rossi F., Jeanteur P., Cathala G., Brunel C., Lührmann R. Thiophosphorylation of U1-70K protein inhibits pre-mRNA splicing. Nature. 1993 May 20;363(6426):283–286. doi: 10.1038/363283a0. [DOI] [PubMed] [Google Scholar]
  26. Tazi J., Rossi F., Labourier E., Gallouzi I., Brunel C., Antoine E. DNA topoisomerase I: customs officer at the border between DNA and RNA worlds? J Mol Med (Berl) 1997 Nov-Dec;75(11-12):786–800. doi: 10.1007/s001090050168. [DOI] [PubMed] [Google Scholar]
  27. Thrash C., Bankier A. T., Barrell B. G., Sternglanz R. Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4374–4378. doi: 10.1073/pnas.82.13.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tian M., Maniatis T. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell. 1993 Jul 16;74(1):105–114. doi: 10.1016/0092-8674(93)90298-5. [DOI] [PubMed] [Google Scholar]
  29. Uemura T., Yanagida M. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J. 1984 Aug;3(8):1737–1744. doi: 10.1002/j.1460-2075.1984.tb02040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–697. doi: 10.1146/annurev.bi.54.070185.003313. [DOI] [PubMed] [Google Scholar]
  31. Wang J. C. DNA topoisomerases: why so many? J Biol Chem. 1991 Apr 15;266(11):6659–6662. [PubMed] [Google Scholar]
  32. Woppmann A., Will C. L., Kornstädt U., Zuo P., Manley J. L., Lührmann R. Identification of an snRNP-associated kinase activity that phosphorylates arginine/serine rich domains typical of splicing factors. Nucleic Acids Res. 1993 Jun 25;21(12):2815–2822. doi: 10.1093/nar/21.12.2815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xiao S. H., Manley J. L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 1997 Feb 1;11(3):334–344. doi: 10.1101/gad.11.3.334. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES