Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 1;26(13):3127–3135. doi: 10.1093/nar/26.13.3127

A comparative study of the thermal stability of oligodeoxyribonucleotides containing 5-substituted 2'-deoxyuridines.

M Ahmadian 1, P Zhang 1, D E Bergstrom 1
PMCID: PMC147667  PMID: 9628909

Abstract

Two series of modified oligonucleotides based on the self-complementary dodecamer d(CGCTAATTAGCG) were synthesized. The first contained the -C identical withCCH2R linker at C5 of deoxyuridine at position 4 (T*) of d(CGCT*AATTAGCG) and the second contained the -SR linker. The goal of the study was to evaluate and compare these two types of side chains for suitability as tethers for linking reporter groups to oligonucleotides. Our primary concern was how these tethers would effect duplex stability. The modified nucleosides were synthesized by palladium-mediated coupling reactions between the substituted alkyne and 5'-(4, 4'-dimethoxytrityl)-5-iodo-2'-deoxyuridine and between a disulfide and 5-chloromercurio-2'-deoxyuridine. The C5 deoxyuridine side chains evaluated included C identical with CCH3, C identical with CCH2NHC(O)CH3, C identical with CCH2N(CH3)2, C identical with CCH2N-HC(O)C5H4N, C identical with CCH2NHC(O)C10H15, SCH3, SC6H5 and SCH2CH2NHC(O)CH3. The nucleosides containing these substituents were incorporated into oligo-deoxyribonucleotides by standard phosphoramidite methodology. Melting studies demonstrated that the sequence containing the C identical with CCH3side chain had the highest T m value (59.1 degrees C) in comparison with the control sequence (T m = 55.2 degrees C) and that any additional substituent on C3 of the propynyl group lowered the T m value relative to propynyl. Nevertheless, even the most destabilizing substituent, adamantylcarbamoyl, yielded an oligodeoxyribonucleotide that dissociated with a T m of 54 degrees C, which is only 1.2 degrees C less than the control sequence. In contrast, the thioether substituents led to lower T m values, ranging from as low as 45.1 degrees C for SPh up to 52.2 degrees C for SMe. Replacing the methyl of the SMe substituent with a CH2CH2NHC(O)CH3 tether led to no further reduction in melting temperature. The T m value of the CH2CH2NHC(O)CH3-containing oligonucleotide was less than the natural sequence by 1.6 degrees C/substituent. This is sufficiently small that it is anticipated that the C5 thioether linkage may be as useful as the acetylenic linkage for tethering reporter groups to oligonucleotides. More importantly, the thioether linkage provides a means to position functional groups to interact specifically with opposing complementary (target) sequences.

Full Text

The Full Text of this article is available as a PDF (189.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergstrom D. E., Zhang P., Johnson W. T. Comparison of the base pairing properties of a series of nitroazole nucleobase analogs in the oligodeoxyribonucleotide sequence 5'-d(CGCXAATTYGCG)-3'. Nucleic Acids Res. 1997 May 15;25(10):1935–1942. doi: 10.1093/nar/25.10.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cook A. F., Vuocolo E., Brakel C. L. Synthesis and hybridization of a series of biotinylated oligonucleotides. Nucleic Acids Res. 1988 May 11;16(9):4077–4095. doi: 10.1093/nar/16.9.4077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dickerson R. E., Drew H. R., Conner B. N., Wing R. M., Fratini A. V., Kopka M. L. The anatomy of A-, B-, and Z-DNA. Science. 1982 Apr 30;216(4545):475–485. doi: 10.1126/science.7071593. [DOI] [PubMed] [Google Scholar]
  4. Dreyer G. B., Dervan P. B. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA X Fe(II). Proc Natl Acad Sci U S A. 1985 Feb;82(4):968–972. doi: 10.1073/pnas.82.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans R. K., Johnson J. D., Haley B. E. 5-Azido-2'-deoxyuridine 5'-triphosphate: a photoaffinity-labeling reagent and tool for the enzymatic synthesis of photoactive DNA. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5382–5386. doi: 10.1073/pnas.83.15.5382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibson K. J., Benkovic S. J. Synthesis and application of derivatizable oligonucleotides. Nucleic Acids Res. 1987 Aug 25;15(16):6455–6467. doi: 10.1093/nar/15.16.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagmar P., Bailey M., Tong G., Haralambidis J., Sawyer W. H., Davidson B. E. Synthesis and characterisation of fluorescent oligonucleotides. Effect of internal labelling on protein recognition. Biochim Biophys Acta. 1995 Jun 9;1244(2-3):259–268. doi: 10.1016/0304-4165(95)00015-4. [DOI] [PubMed] [Google Scholar]
  8. Hare D. R., Wemmer D. E., Chou S. H., Drobny G., Reid B. R. Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-A-T-T-C-G-C-G) using two-dimensional nuclear magnetic resonance methods. J Mol Biol. 1983 Dec 15;171(3):319–336. doi: 10.1016/0022-2836(83)90096-7. [DOI] [PubMed] [Google Scholar]
  9. Hayakawa T., Ono A., Ueda T. Synthesis of decadeoxyribonucleotides containing 5-modified uracils and their interactions with restriction endonucleases Bgl II, Sau 3AI and Mbo I (nucleosides and nucleotides 82). Nucleic Acids Res. 1988 Jun 10;16(11):4761–4776. doi: 10.1093/nar/16.11.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson W. T., Zhang P., Bergstrom D. E. The synthesis and stability of oligodeoxyribonucleotides containing the deoxyadenosine mimic 1-(2'-deoxy-beta-D-ribofuranosyl)imidazole-4-carboxamide. Nucleic Acids Res. 1997 Feb 1;25(3):559–567. doi: 10.1093/nar/25.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kwiatkowski M., Samiotaki M., Lamminmäki U., Mukkala V. M., Landegren U. Solid-phase synthesis of chelate-labelled oligonucleotides: application in triple-color ligase-mediated gene analysis. Nucleic Acids Res. 1994 Jul 11;22(13):2604–2611. doi: 10.1093/nar/22.13.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Langen P., Bärwolff D. On the mode of action of 5-vinyl-2'-deoxyuridine. Biochem Pharmacol. 1975 Oct 15;24(20):1907–1910. doi: 10.1016/0006-2952(75)90417-7. [DOI] [PubMed] [Google Scholar]
  13. Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marky L. A., Blumenfeld K. S., Kozlowski S., Breslauer K. J. Salt-dependent conformational transitions in the self-complementary deoxydodecanucleotide d(CGCAATTCGCG): evidence for hairpin formation. Biopolymers. 1983 Apr;22(4):1247–1257. doi: 10.1002/bip.360220416. [DOI] [PubMed] [Google Scholar]
  15. Meyer K. L., Hanna M. M. Synthesis and characterization of a new 5-thiol-protected deoxyuridine phosphoramidite for site-specific modification of DNA. Bioconjug Chem. 1996 Jul-Aug;7(4):401–412. doi: 10.1021/bc960011a. [DOI] [PubMed] [Google Scholar]
  16. Nara H., Ono A., Matsuda A. Nucleosides and nucleotides. 135. DNA duplex and triplex formation and resistance to nucleolytic degradation of oligodeoxynucleotides containing syn-norspermidine at the 5-position of 2'-deoxyuridine. Bioconjug Chem. 1995 Jan-Feb;6(1):54–61. doi: 10.1021/bc00031a005. [DOI] [PubMed] [Google Scholar]
  17. Nielsen J., Dahl O. Improved synthesis of (Pri2 N)2POCH2CH2CN. Nucleic Acids Res. 1987 Apr 24;15(8):3626–3626. doi: 10.1093/nar/15.8.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pardi A., Morden K. M., Patel D. J., Tinoco I., Jr Kinetics for exchange of the imino protons of the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix in complexes with the antibiotics netropsin and/or actinomycin. Biochemistry. 1983 Mar 1;22(5):1107–1113. doi: 10.1021/bi00274a018. [DOI] [PubMed] [Google Scholar]
  19. Patel D. J., Kozlowski S. A., Marky L. A., Broka C., Rice J. A., Itakura K., Breslauer K. J. Premelting and melting transitions in the d(CGCGAATTCGCG) self-complementary duplex in solution. Biochemistry. 1982 Feb 2;21(3):428–436. doi: 10.1021/bi00532a002. [DOI] [PubMed] [Google Scholar]
  20. Prober J. M., Trainor G. L., Dam R. J., Hobbs F. W., Robertson C. W., Zagursky R. J., Cocuzza A. J., Jensen M. A., Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987 Oct 16;238(4825):336–341. doi: 10.1126/science.2443975. [DOI] [PubMed] [Google Scholar]
  21. Shah K., Neenhold H., Wang Z., Rana T. M. Incorporation of an artificial protease and nuclease at the HIV-1 Tat binding site of trans-activation responsive RNA. Bioconjug Chem. 1996 May-Jun;7(3):283–289. doi: 10.1021/bc960023w. [DOI] [PubMed] [Google Scholar]
  22. Shimkus M., Levy J., Herman T. A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns. Proc Natl Acad Sci U S A. 1985 May;82(9):2593–2597. doi: 10.1073/pnas.82.9.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spaltenstein A., Robinson B. H., Hopkins P. B. Sequence- and structure-dependent DNA base dynamics: synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA. Biochemistry. 1989 Nov 28;28(24):9484–9495. doi: 10.1021/bi00450a036. [DOI] [PubMed] [Google Scholar]
  24. Sági J., Czuppon A., Kajtár M., Szabolcs A., Szemzö A., Otvös L. Modified polynucleotides. VI. Properties of a synthetic DNA containing the anti-herpes agent (E)-5-(2-bromovinyl)-2'-deoxyuridine. Nucleic Acids Res. 1982 Oct 11;10(19):6051–6066. doi: 10.1093/nar/10.19.6051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tabone J. C., Stamm M. R., Gamper H. B., Meyer R. B., Jr Factors influencing the extent and regiospecificity of cross-link formation between single-stranded DNA and reactive complementary oligodeoxynucleotides. Biochemistry. 1994 Jan 11;33(1):375–383. doi: 10.1021/bi00167a048. [DOI] [PubMed] [Google Scholar]
  26. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES