Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 1;26(13):3270–3278. doi: 10.1093/nar/26.13.3270

Co-packaging of sense and antisense RNAs: a novel strategy for blocking HIV-1 replication.

S F Ding 1, J Noronha 1, S Joshi 1
PMCID: PMC147669  PMID: 9628929

Abstract

Retroviral vectors were engineered to express either sense (MoTiN-TRPsie+) or sense and antisense (MoTN-TRPsie+/-) RNAs containing the human immunodeficiency virus type-1 (HIV-1) trans -activation response (TAR) element and the extended packaging (Psie) signal. The Psie signal includes the dimer linkage structure (DLS) and the Rev response element (RRE). Amphotropic vector particles were used to transduce a human CD4+ T-lymphoid (MT4) cell line. Stable transductants were then tested for sense and antisense RNA production and susceptibility to HIV-1 infection. HIV-1 production was significantly decreased in cells transduced with MoTiN-TRPsie+ and MoTN-TRPsie+/-vectors. Efficient packaging of sense and most remarkably of antisense RNA was observed within the virus progeny. Infectivity of this virus was significantly decreased in both cases, suggesting that the interfering RNAs were co-packaged with HIV-1 RNA. Vector transduction was not expected to occur and was not observed. Inhibition of HIV-1 replication was also demonstrated in human peripheral blood lymphocytes transduced with retroviral vectors expressing antisense RNA. These results suggest that (i) both sense and antisense RNAs were co-packaged with HIV-1 RNA, (ii) the co-packaged sense and antisense RNAs inhibited virus infectivity and (iii) the co-packaged sense and antisense RNAs were not transduced. Sense and antisense RNA-based strategies may also be used to co-package other interfering RNAs (e.g. ribozymes) to cleave HIV-1 virion RNA.

Full Text

The Full Text of this article is available as a PDF (217.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldovini A., Young R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990 May;64(5):1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Awang G., Sen D. Mode of dimerization of HIV-1 genomic RNA. Biochemistry. 1993 Oct 26;32(42):11453–11457. doi: 10.1021/bi00093a024. [DOI] [PubMed] [Google Scholar]
  4. Bahner I., Kearns K., Hao Q. L., Smogorzewska E. M., Kohn D. B. Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture. J Virol. 1996 Jul;70(7):4352–4360. doi: 10.1128/jvi.70.7.4352-4360.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bahner I., Zhou C., Yu X. J., Hao Q. L., Guatelli J. C., Kohn D. B. Comparison of trans-dominant inhibitory mutant human immunodeficiency virus type 1 genes expressed by retroviral vectors in human T lymphocytes. J Virol. 1993 Jun;67(6):3199–3207. doi: 10.1128/jvi.67.6.3199-3207.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bevec D., Volc-Platzer B., Zimmermann K., Dobrovnik M., Hauber J., Veres G., Böhnlein E. Constitutive expression of chimeric neo-Rev response element transcripts suppresses HIV-1 replication in human CD4+ T lymphocytes. Hum Gene Ther. 1994 Feb;5(2):193–201. doi: 10.1089/hum.1994.5.2-193. [DOI] [PubMed] [Google Scholar]
  7. Biasolo M. A., Radaelli A., Del Pup L., Franchin E., De Giuli-Morghen C., Palu G. A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection. J Virol. 1996 Apr;70(4):2154–2161. doi: 10.1128/jvi.70.4.2154-2161.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bridges S. H., Sarver N. Gene therapy and immune restoration for HIV disease. Lancet. 1995 Feb 18;345(8947):427–432. doi: 10.1016/s0140-6736(95)90407-7. [DOI] [PubMed] [Google Scholar]
  9. Brighty D. W., Rosenberg M. A cis-acting repressive sequence that overlaps the Rev-responsive element of human immunodeficiency virus type 1 regulates nuclear retention of env mRNAs independently of known splice signals. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8314–8318. doi: 10.1073/pnas.91.18.8314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caputo A., Grossi M. P., Bozzini R., Rossi C., Betti M., Marconi P. C., Barbanti-Brodano G., Balboni P. G. Inhibition of HIV-1 replication and reactivation from latency by tat transdominant negative mutants in the cysteine rich region. Gene Ther. 1996 Mar;3(3):235–245. [PubMed] [Google Scholar]
  11. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  12. Clever J., Sassetti C., Parslow T. G. RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1. J Virol. 1995 Apr;69(4):2101–2109. doi: 10.1128/jvi.69.4.2101-2109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cohli H., Fan B., Joshi R. L., Ramezani A., Li X., Joshi S. Inhibition of HIV-1 multiplication in a human CD4+ lymphocytic cell line expressing antisense and sense RNA molecules containing HIV-1 packaging signal and Rev response element(s). Antisense Res Dev. 1994 Spring;4(1):19–26. doi: 10.1089/ard.1994.4.19. [DOI] [PubMed] [Google Scholar]
  14. Dundr M., Leno G. H., Hammarskjöld M. L., Rekosh D., Helga-Maria C., Olson M. O. The roles of nucleolar structure and function in the subcellular location of the HIV-1 Rev protein. J Cell Sci. 1995 Aug;108(Pt 8):2811–2823. doi: 10.1242/jcs.108.8.2811. [DOI] [PubMed] [Google Scholar]
  15. Green M., Ishino M., Loewenstein P. M. Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell. 1989 Jul 14;58(1):215–223. doi: 10.1016/0092-8674(89)90417-0. [DOI] [PubMed] [Google Scholar]
  16. Hayashi T., Shioda T., Iwakura Y., Shibuta H. RNA packaging signal of human immunodeficiency virus type 1. Virology. 1992 Jun;188(2):590–599. doi: 10.1016/0042-6822(92)90513-o. [DOI] [PubMed] [Google Scholar]
  17. Joshi S., Ding S. F., Liem S. E. Co-packaging of non-vector RNAs generates replication-defective retroviral vector particles: a novel approach for blocking retrovirus replication. Nucleic Acids Res. 1997 Aug 15;25(16):3199–3203. doi: 10.1093/nar/25.16.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Joshi S., Van Brunschot A., Robson I., Bernstein A. Efficient replication, integration, and packaging of retroviral vectors with modified long terminal repeats containing the packaging signal. Nucleic Acids Res. 1990 Jul 25;18(14):4223–4226. doi: 10.1093/nar/18.14.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Larder B. A., Darby G., Richman D. D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989 Mar 31;243(4899):1731–1734. doi: 10.1126/science.2467383. [DOI] [PubMed] [Google Scholar]
  20. Lee S. W., Gallardo H. F., Gaspar O., Smith C., Gilboa E. Inhibition of HIV-1 in CEM cells by a potent TAR decoy. Gene Ther. 1995 Aug;2(6):377–384. [PubMed] [Google Scholar]
  21. Lee S. W., Gallardo H. F., Gilboa E., Smith C. Inhibition of human immunodeficiency virus type 1 in human T cells by a potent Rev response element decoy consisting of the 13-nucleotide minimal Rev-binding domain. J Virol. 1994 Dec;68(12):8254–8264. doi: 10.1128/jvi.68.12.8254-8264.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee T. C., Sullenger B. A., Gallardo H. F., Ungers G. E., Gilboa E. Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol. 1992 Jan;4(1):66–74. [PubMed] [Google Scholar]
  23. Lever A., Gottlinger H., Haseltine W., Sodroski J. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol. 1989 Sep;63(9):4085–4087. doi: 10.1128/jvi.63.9.4085-4087.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liem S. E., Ramezani A., Li X., Joshi S. The development and testing of retroviral vectors expressing trans-dominant mutants of HIV-1 proteins to confer anti-HIV-1 resistance. Hum Gene Ther. 1993 Oct;4(5):625–634. doi: 10.1089/hum.1993.4.5-625. [DOI] [PubMed] [Google Scholar]
  25. Lisziewicz J., Rappaport J., Dhar R. Tat-regulated production of multimerized TAR RNA inhibits HIV-1 gene expression. New Biol. 1991 Jan;3(1):82–89. [PubMed] [Google Scholar]
  26. Lisziewicz J., Sun D., Trapnell B., Thomson M., Chang H. K., Ensoli B., Peng B. An autoregulated dual-function antitat gene for human immunodeficiency virus type 1 gene therapy. J Virol. 1995 Jan;69(1):206–212. doi: 10.1128/jvi.69.1.206-212.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Magli M. C., Dick J. E., Huszar D., Bernstein A., Phillips R. A. Modulation of gene expression in multiple hematopoietic cell lineages following retroviral vector gene transfer. Proc Natl Acad Sci U S A. 1987 Feb;84(3):789–793. doi: 10.1073/pnas.84.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Malim M. H., Böhnlein S., Hauber J., Cullen B. R. Functional dissection of the HIV-1 Rev trans-activator--derivation of a trans-dominant repressor of Rev function. Cell. 1989 Jul 14;58(1):205–214. doi: 10.1016/0092-8674(89)90416-9. [DOI] [PubMed] [Google Scholar]
  29. Malim M. H., Freimuth W. W., Liu J., Boyle T. J., Lyerly H. K., Cullen B. R., Nabel G. J. Stable expression of transdominant Rev protein in human T cells inhibits human immunodeficiency virus replication. J Exp Med. 1992 Oct 1;176(4):1197–1201. doi: 10.1084/jem.176.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mann D. A., Mikaélian I., Zemmel R. W., Green S. M., Lowe A. D., Kimura T., Singh M., Butler P. J., Gait M. J., Karn J. A molecular rheostat. Co-operative rev binding to stem I of the rev-response element modulates human immunodeficiency virus type-1 late gene expression. J Mol Biol. 1994 Aug 12;241(2):193–207. doi: 10.1006/jmbi.1994.1488. [DOI] [PubMed] [Google Scholar]
  31. Mann R., Mulligan R. C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  32. Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Naldini L., Blömer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996 Apr 12;272(5259):263–267. doi: 10.1126/science.272.5259.263. [DOI] [PubMed] [Google Scholar]
  34. Nasioulas G., Zolotukhin A. S., Tabernero C., Solomin L., Cunningham C. P., Pavlakis G. N., Felber B. K. Elements distinct from human immunodeficiency virus type 1 splice sites are responsible for the Rev dependence of env mRNA. J Virol. 1994 May;68(5):2986–2993. doi: 10.1128/jvi.68.5.2986-2993.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Okamoto H., Sheline C. T., Corden J. L., Jones K. A., Peterlin B. M. Trans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11575–11579. doi: 10.1073/pnas.93.21.11575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parada C. A., Roeder R. G. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature. 1996 Nov 28;384(6607):375–378. doi: 10.1038/384375a0. [DOI] [PubMed] [Google Scholar]
  37. Pauwels R., De Clercq E., Desmyter J., Balzarini J., Goubau P., Herdewijn P., Vanderhaeghe H., Vandeputte M. Sensitive and rapid assay on MT-4 cells for detection of antiviral compounds against the AIDS virus. J Virol Methods. 1987 Jun;16(3):171–185. doi: 10.1016/0166-0934(87)90002-4. [DOI] [PubMed] [Google Scholar]
  38. Peng H., Callison D., Li P., Burrell C. Long-term protection against HIV-1 infection conferred by tat or rev antisense RNA was affected by the design of the retroviral vector. Virology. 1996 Jun 15;220(2):377–389. doi: 10.1006/viro.1996.0326. [DOI] [PubMed] [Google Scholar]
  39. Poeschla E. M., Wong-Staal F. Gene therapy and HIV disease. AIDS Clin Rev. 1995:1–45. [PubMed] [Google Scholar]
  40. Ramezani A., Ding S. F., Joshi S. Inhibition of HIV-1 replication by retroviral vectors expressing monomeric and multimeric hammerhead ribozymes. Gene Ther. 1997 Aug;4(8):861–867. doi: 10.1038/sj.gt.3300474. [DOI] [PubMed] [Google Scholar]
  41. Ramezani A., Joshi S. Comparative analysis of five highly conserved target sites within the HIV-1 RNA for their susceptibility to hammerhead ribozyme-mediated cleavage in vitro and in vivo. Antisense Nucleic Acid Drug Dev. 1996 Fall;6(3):229–235. doi: 10.1089/oli.1.1996.6.229. [DOI] [PubMed] [Google Scholar]
  42. Richardson J. H., Child L. A., Lever A. M. Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5' leader region. J Virol. 1993 Jul;67(7):3997–4005. doi: 10.1128/jvi.67.7.3997-4005.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sakai H., Furuta R. A., Tokunaga K., Kawamura M., Hatanaka M., Adachi A. Rev-dependency of expression of human immunodeficiency virus type 1 gag and env genes. FEBS Lett. 1995 May 29;365(2-3):141–145. doi: 10.1016/0014-5793(95)00444-e. [DOI] [PubMed] [Google Scholar]
  44. Sczakiel G., Oppenländer M., Rittner K., Pawlita M. Tat- and Rev-directed antisense RNA expression inhibits and abolishes replication of human immunodeficiency virus type 1: a temporal analysis. J Virol. 1992 Sep;66(9):5576–5581. doi: 10.1128/jvi.66.9.5576-5581.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Smith C., Sullenger B. A. AIDS and HIV infection. Mol Cell Biol Hum Dis Ser. 1995;5:195–236. doi: 10.1007/978-94-011-0547-7_11. [DOI] [PubMed] [Google Scholar]
  46. Sullenger B. A., Cech T. R. Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science. 1993 Dec 3;262(5139):1566–1569. doi: 10.1126/science.8248806. [DOI] [PubMed] [Google Scholar]
  47. Sullenger B. A., Gallardo H. F., Ungers G. E., Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990 Nov 2;63(3):601–608. doi: 10.1016/0092-8674(90)90455-n. [DOI] [PubMed] [Google Scholar]
  48. Veres G., Escaich S., Baker J., Barske C., Kalfoglou C., Ilves H., Kaneshima H., Böhnlein E. Intracellular expression of RNA transcripts complementary to the human immunodeficiency virus type 1 gag gene inhibits viral replication in human CD4+ lymphocytes. J Virol. 1996 Dec;70(12):8792–8800. doi: 10.1128/jvi.70.12.8792-8800.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Veres G., Junker U., Baker J., Barske C., Kalfoglou C., Ilves H., Escaich S., Kaneshima H., Böhnlein E. Comparative analyses of intracellularly expressed antisense RNAs as inhibitors of human immunodeficiency virus type 1 replication. J Virol. 1998 Mar;72(3):1894–1901. doi: 10.1128/jvi.72.3.1894-1901.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Verhoef K., Tijms M., Berkhout B. Optimal Tat-mediated activation of the HIV-1 LTR promoter requires a full-length TAR RNA hairpin. Nucleic Acids Res. 1997 Feb 1;25(3):496–502. doi: 10.1093/nar/25.3.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zacharias M., Hagerman P. J. The bend in RNA created by the trans-activation response element bulge of human immunodeficiency virus is straightened by arginine and by Tat-derived peptide. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6052–6056. doi: 10.1073/pnas.92.13.6052. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES