Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 1;26(13):3235–3241. doi: 10.1093/nar/26.13.3235

Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes.

A M Diegelman 1, E T Kool 1
PMCID: PMC147673  PMID: 9628924

Abstract

A simple new strategy for the in vitro synthesis of circular RNAs and hairpin ribozymes is described. Circular single-strand DNA oligonucleotides 67-79 nt in length are constructed to encode both hairpin ribozyme sequences and ribozyme-cleavable sequences. In vitro transcription of these small circles by Escherichia coli RNA polymerase produces long repeating RNAs by a rolling circle mechanism. These repetitive RNAsundergo self-processing, eventually yielding unit length circular and linear RNAs as the chief products. The transcription is efficient despite the absence of promoter sequences, with RNA being produced in up to 400 times the amount of DNA circle used. It is shown that the linear monomeric hairpin ribozymes are active in cleaving RNA targets in trans , including one from HIV-1. Several new findings are established: (i) that rolling circle transcription can be extended to the synthesis of catalytic RNAs outside the hammerhead ribozyme motif; (ii) that rolling circle transcription is potentially a very simple and useful strategy for the generation of circular RNAs in preparative amounts; and (iii) that self-processed hairpin ribozymes can be catalytically active in trans despite the presence of self-binding domains.

Full Text

The Full Text of this article is available as a PDF (669.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res. 1996 Mar 15;24(6):1015–1019. doi: 10.1093/nar/24.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke J. M. Hairpin ribozyme: current status and future prospects. Biochem Soc Trans. 1996 Aug;24(3):608–615. doi: 10.1042/bst0240608. [DOI] [PubMed] [Google Scholar]
  3. Cazenave C., Uhlenbeck O. C. RNA template-directed RNA synthesis by T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6972–6976. doi: 10.1073/pnas.91.15.6972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cech T. R. The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene. 1993 Dec 15;135(1-2):33–36. doi: 10.1016/0378-1119(93)90046-6. [DOI] [PubMed] [Google Scholar]
  5. Chen C. Y., Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 1995 Apr 21;268(5209):415–417. doi: 10.1126/science.7536344. [DOI] [PubMed] [Google Scholar]
  6. Chowrira B. M., Pavco P. A., McSwiggen J. A. In vitro and in vivo comparison of hammerhead, hairpin, and hepatitis delta virus self-processing ribozyme cassettes. J Biol Chem. 1994 Oct 14;269(41):25856–25864. [PubMed] [Google Scholar]
  7. Côté F., Perreault J. P. Peach latent mosaic viroid is locked by a 2',5'-phosphodiester bond produced by in vitro self-ligation. J Mol Biol. 1997 Oct 31;273(3):533–543. doi: 10.1006/jmbi.1997.1355. [DOI] [PubMed] [Google Scholar]
  8. Damha M. J., Ogilvie K. K. Oligoribonucleotide synthesis. The silyl-phosphoramidite method. Methods Mol Biol. 1993;20:81–114. doi: 10.1385/0-89603-281-7:81. [DOI] [PubMed] [Google Scholar]
  9. Daubendiek S. L., Kool E. T. Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles. Nat Biotechnol. 1997 Mar;15(3):273–277. doi: 10.1038/nbt0397-273. [DOI] [PubMed] [Google Scholar]
  10. Diener T. O. The viroid: big punch in a small package. Trends Microbiol. 1993 Nov;1(8):289–294. doi: 10.1016/0966-842x(93)90004-b. [DOI] [PubMed] [Google Scholar]
  11. Dzianott A. M., Bujarski J. J. Derivation of an infectious viral RNA by autolytic cleavage of in vitro transcribed viral cDNAs. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4823–4827. doi: 10.1073/pnas.86.13.4823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Earnshaw D. J., Gait M. J. Progress toward the structure and therapeutic use of the hairpin ribozyme. Antisense Nucleic Acid Drug Dev. 1997 Aug;7(4):403–411. doi: 10.1089/oli.1.1997.7.403. [DOI] [PubMed] [Google Scholar]
  13. Erie D. A., Yager T. D., von Hippel P. H. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu Rev Biophys Biomol Struct. 1992;21:379–415. doi: 10.1146/annurev.bb.21.060192.002115. [DOI] [PubMed] [Google Scholar]
  14. Feldstein P. A., Bruening G. Catalytically active geometry in the reversible circularization of 'mini-monomer' RNAs derived from the complementary strand of tobacco ringspot virus satellite RNA. Nucleic Acids Res. 1993 Apr 25;21(8):1991–1998. doi: 10.1093/nar/21.8.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ford E., Ares M., Jr Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3117–3121. doi: 10.1073/pnas.91.8.3117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grosshans C. A., Cech T. R. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification. Nucleic Acids Res. 1991 Jul 25;19(14):3875–3880. doi: 10.1093/nar/19.14.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hampel A. The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. Prog Nucleic Acid Res Mol Biol. 1998;58:1–39. doi: 10.1016/s0079-6603(08)60032-x. [DOI] [PubMed] [Google Scholar]
  18. Hampel A., Tritz R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry. 1989 Jun 13;28(12):4929–4933. doi: 10.1021/bi00438a002. [DOI] [PubMed] [Google Scholar]
  19. Haseloff J., Gerlach W. L. Sequences required for self-catalysed cleavage of the satellite RNA of tobacco ringspot virus. Gene. 1989 Oct 15;82(1):43–52. doi: 10.1016/0378-1119(89)90028-0. [DOI] [PubMed] [Google Scholar]
  20. Joseph S., Burke J. M. Optimization of an anti-HIV hairpin ribozyme by in vitro selection. J Biol Chem. 1993 Nov 25;268(33):24515–24518. [PubMed] [Google Scholar]
  21. Komatsu Y., Koizumi M., Sekiguchi A., Ohtsuka E. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes. Nucleic Acids Res. 1993 Jan 25;21(2):185–190. doi: 10.1093/nar/21.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krupp G. RNA synthesis: strategies for the use of bacteriophage RNA polymerases. Gene. 1988 Dec 10;72(1-2):75–89. doi: 10.1016/0378-1119(88)90129-1. [DOI] [PubMed] [Google Scholar]
  23. Long D. M., Uhlenbeck O. C. Self-cleaving catalytic RNA. FASEB J. 1993 Jan;7(1):25–30. doi: 10.1096/fasebj.7.1.8422971. [DOI] [PubMed] [Google Scholar]
  24. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  25. Moran S., Ren R. X., Sheils C. J., Rumney S., 4th, Kool E. T. Non-hydrogen bonding 'terminator' nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis. Nucleic Acids Res. 1996 Jun 1;24(11):2044–2052. doi: 10.1093/nar/24.11.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pan T., Gutell R. R., Uhlenbeck O. C. Folding of circularly permuted transfer RNAs. Science. 1991 Nov 29;254(5036):1361–1364. doi: 10.1126/science.1720569. [DOI] [PubMed] [Google Scholar]
  27. Pasman Z., Been M. D., Garcia-Blanco M. A. Exon circularization in mammalian nuclear extracts. RNA. 1996 Jun;2(6):603–610. [PMC free article] [PubMed] [Google Scholar]
  28. Poeschla E., Wong-Staal F. Antiviral and anticancer ribozymes. Curr Opin Oncol. 1994 Nov;6(6):601–606. doi: 10.1097/00001622-199411000-00012. [DOI] [PubMed] [Google Scholar]
  29. Puttaraju M., Been M. D. Circular ribozymes generated in Escherichia coli using group I self-splicing permuted intron-exon sequences. J Biol Chem. 1996 Oct 18;271(42):26081–26087. doi: 10.1074/jbc.271.42.26081. [DOI] [PubMed] [Google Scholar]
  30. Puttaraju M., Been M. D. Generation of nuclease resistant circular RNA decoys for HIV-Tat and HIV-Rev by autocatalytic splicing. Nucleic Acids Symp Ser. 1995;(33):49–51. [PubMed] [Google Scholar]
  31. Puttaraju M., Perrotta A. T., Been M. D. A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res. 1993 Sep 11;21(18):4253–4258. doi: 10.1093/nar/21.18.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rigden J. E., Rezaian M. A. In vitro synthesis of an infectious viroid: analysis of the infectivity of monomeric linear CEV. Virology. 1992 Jan;186(1):201–206. doi: 10.1016/0042-6822(92)90074-y. [DOI] [PubMed] [Google Scholar]
  33. Rubin E., Rumney S., 4th, Wang S., Kool E. T. Convergent DNA synthesis: a non-enzymatic dimerization approach to circular oligodeoxynucleotides. Nucleic Acids Res. 1995 Sep 11;23(17):3547–3553. doi: 10.1093/nar/23.17.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ruiz J., Wu C. H., Ito Y., Wu G. Y. Design and preparation of a multimeric self-cleaving hammerhead ribozyme. Biotechniques. 1997 Feb;22(2):338–345. doi: 10.2144/97222rr03. [DOI] [PubMed] [Google Scholar]
  35. Scanlon K. J., Ohta Y., Ishida H., Kijima H., Ohkawa T., Kaminski A., Tsai J., Horng G., Kashani-Sabet M. Oligonucleotide-mediated modulation of mammalian gene expression. FASEB J. 1995 Oct;9(13):1288–1296. doi: 10.1096/fasebj.9.13.7557018. [DOI] [PubMed] [Google Scholar]
  36. Scaringe S. A., Francklyn C., Usman N. Chemical synthesis of biologically active oligoribonucleotides using beta-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Res. 1990 Sep 25;18(18):5433–5441. doi: 10.1093/nar/18.18.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scott W. G., Klug A. Ribozymes: structure and mechanism in RNA catalysis. Trends Biochem Sci. 1996 Jun;21(6):220–224. [PubMed] [Google Scholar]
  38. Stump W. T., Hall K. B. SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res. 1993 Nov 25;21(23):5480–5484. doi: 10.1093/nar/21.23.5480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Symons R. H. Plant pathogenic RNAs and RNA catalysis. Nucleic Acids Res. 1997 Jul 15;25(14):2683–2689. doi: 10.1093/nar/25.14.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Taira K., Nakagawa K., Nishikawa S., Furukawa K. Construction of a novel RNA-transcript-trimming plasmid which can be used both in vitro in place of run-off and (G)-free transcriptions and in vivo as multi-sequences transcription vectors. Nucleic Acids Res. 1991 Oct 11;19(19):5125–5130. doi: 10.1093/nar/19.19.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ventura M., Wang P., Ragot T., Perricaudet M., Saragosti S. Activation of HIV-specific ribozyme activity by self-cleavage. Nucleic Acids Res. 1993 Jul 11;21(14):3249–3255. doi: 10.1093/nar/21.14.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. X Ma M. Y., McCallum K., Climie S. C., Kuperman R., Lin W. C., Sumner-Smith M., Barnett R. W. Design and synthesis of RNA miniduplexes via a synthetic linker approach. 2. Generation of covalently closed, double-stranded cyclic HIV-1 TAR RNA analogs with high Tat-binding affinity. Nucleic Acids Res. 1993 Jun 11;21(11):2585–2589. doi: 10.1093/nar/21.11.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES