Abstract
Condensation of DNA by multivalent cations can provide useful insights into the physical factors governing the folding and packaging of DNA in vivo. In this work, local ordered structures of spermidine-DNA complexes prepared from different DNA concentrations have been examined by using atomic force microscopy (AFM) and polarizing microscopy (PM). Two types (I and II) of DNA condensates, significantly different in sizes, were observed. It was found that for extremely dilute solutions (DNA concentrations around 1 ng/microl or below), the DNA molecules would collapse into toroidal structures with a volume equivalent to a single lambda-DNA (type I). In relatively dilute solutions (DNA concentrations between 1 and 10 ng/microll), a significantly larger structure of multimolecular toroids (circular and elliptical, type II) were formed, which were constructed by many fine particles. Measurements show that the average diameter of these fine particles was similar to the outer diameter of the monomolecular toroids observed in extremely dilute solutions, and the thickness of the multimolecular toroids had a distribution of multi-layers with height increments of 11 nm, indicating that the multimolecular toroidal structures have lamellar characteristics. Moreover, by enriching the DNA-spermidine complexes in very diluted solution, branch-like structures constructed by subunits were observed by using AFM. The analysis of the pellets in polarizing microscopy reveals a liquid-crystal-like pattern. These observations suggest that DNA-spermidine condensation could have multiple stages, which are very sensitive to the DNA and spermidine concentrations.
Full Text
The Full Text of this article is available as a PDF (225.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen M. J., Bradbury E. M., Balhorn R. AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res. 1997 Jun 1;25(11):2221–2226. doi: 10.1093/nar/25.11.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allison S. A., Herr J. C., Schurr J. M. Structure of viral phi 29 DNA condensed by simple triamines: a light-scattering and electron-microscopy study. Biopolymers. 1981 Mar;20(3):469–488. doi: 10.1002/bip.1981.360200305. [DOI] [PubMed] [Google Scholar]
- Arscott P. G., Li A. Z., Bloomfield V. A. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers. 1990;30(5-6):619–630. doi: 10.1002/bip.360300514. [DOI] [PubMed] [Google Scholar]
- Becker M., Misselwitz R., Damaschun H., Damaschun G., Zirwer D. Spermine-DNA complexes build up metastable structures. Small-angle X-ray scattering and circular dichroism studies. Nucleic Acids Res. 1979 Nov 10;7(5):1297–1309. doi: 10.1093/nar/7.5.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloomfield V. A. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991 Nov;31(13):1471–1481. doi: 10.1002/bip.360311305. [DOI] [PubMed] [Google Scholar]
- Chattoraj D. K., Gosule L. C., Schellman A. DNA condensation with polyamines. II. Electron microscopic studies. J Mol Biol. 1978 May 25;121(3):327–337. doi: 10.1016/0022-2836(78)90367-4. [DOI] [PubMed] [Google Scholar]
- Dunlap D. D., Maggi A., Soria M. R., Monaco L. Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res. 1997 Aug 1;25(15):3095–3101. doi: 10.1093/nar/25.15.3095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erie D. A., Yang G., Schultz H. C., Bustamante C. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science. 1994 Dec 2;266(5190):1562–1566. doi: 10.1126/science.7985026. [DOI] [PubMed] [Google Scholar]
- Flink I., Pettijohn D. E. Polyamines stabilise DNA folds. Nature. 1975 Jan 3;253(5486):62–63. doi: 10.1038/253062a0. [DOI] [PubMed] [Google Scholar]
- Gosule L. C., Schellman J. A. Compact form of DNA induced by spermidine. Nature. 1976 Jan 29;259(5541):333–335. doi: 10.1038/259333a0. [DOI] [PubMed] [Google Scholar]
- Gosule L. C., Schellman J. A. DNA condensation with polyamines I. Spectroscopic studies. J Mol Biol. 1978 May 25;121(3):311–326. doi: 10.1016/0022-2836(78)90366-2. [DOI] [PubMed] [Google Scholar]
- Han W., Lindsay S. M., Dlakic M., Harrington R. E. Kinked DNA. Nature. 1997 Apr 10;386(6625):563–563. doi: 10.1038/386563a0. [DOI] [PubMed] [Google Scholar]
- Hansma H. G., Revenko I., Kim K., Laney D. E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res. 1996 Feb 15;24(4):713–720. doi: 10.1093/nar/24.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haynes M., Garrett R. A., Gratzer W. B. Structure of nucleic acid-poly base complexes. Biochemistry. 1970 Oct 27;9(22):4410–4416. doi: 10.1021/bi00824a600. [DOI] [PubMed] [Google Scholar]
- Hud N. V., Allen M. J., Downing K. H., Lee J., Balhorn R. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1347–1354. doi: 10.1006/bbrc.1993.1773. [DOI] [PubMed] [Google Scholar]
- Hud N. V., Downing K. H., Balhorn R. A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3581–3585. doi: 10.1073/pnas.92.8.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4288–4292. doi: 10.1073/pnas.72.11.4288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma C., Bloomfield V. A. Condensation of supercoiled DNA induced by MnCl2. Biophys J. 1994 Oct;67(4):1678–1681. doi: 10.1016/S0006-3495(94)80641-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manning G. S. Limiting laws and counterion condensation in polyelectrolyte solutions. IV. The approach to the limit and the extraordinary stability of the charge fraction. Biophys Chem. 1977 Sep;7(2):95–102. doi: 10.1016/0301-4622(77)80002-1. [DOI] [PubMed] [Google Scholar]
- Manning G. S. Packaged DNA. An elastic model. Cell Biophys. 1985 Mar;7(1):57–89. doi: 10.1007/BF02788639. [DOI] [PubMed] [Google Scholar]
- Manning G. S. Thermodynamic stability theory for DNA doughnut shapes induced by charge neutralization. Biopolymers. 1980 Jan;19(1):37–59. doi: 10.1002/bip.1980.360190104. [DOI] [PubMed] [Google Scholar]
- Marx K. A., Reynolds T. C. Spermidine-condensed phi X174 DNA cleavage by micrococcal nuclease: torus cleavage model and evidence for unidirectional circumferential DNA wrapping. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6484–6488. doi: 10.1073/pnas.79.21.6484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marx K. A., Ruben G. C. A study of phi X-174 DNA torus and lambda DNA torus tertiary structure and the implications for DNA self-assembly. J Biomol Struct Dyn. 1986 Aug;4(1):23–39. doi: 10.1080/07391102.1986.10507644. [DOI] [PubMed] [Google Scholar]
- Marx K. A., Ruben G. C. Evidence for hydrated spermidine-calf thymus DNA toruses organized by circumferential DNA wrapping. Nucleic Acids Res. 1983 Mar 25;11(6):1839–1854. doi: 10.1093/nar/11.6.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marx K. A., Ruben G. C. Studies of DNA organization in hydrated spermidine-condensed DNA toruses and spermidine-DNA fibres. J Biomol Struct Dyn. 1984 Mar;1(5):1109–1132. doi: 10.1080/07391102.1984.10507507. [DOI] [PubMed] [Google Scholar]
- Pelta J., Livolant F., Sikorav J. L. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem. 1996 Mar 8;271(10):5656–5662. doi: 10.1074/jbc.271.10.5656. [DOI] [PubMed] [Google Scholar]
- Plum G. E., Arscott P. G., Bloomfield V. A. Condensation of DNA by trivalent cations. 2. Effects of cation structure. Biopolymers. 1990;30(5-6):631–643. doi: 10.1002/bip.360300515. [DOI] [PubMed] [Google Scholar]
- Porschke D. Dynamics of DNA condensation. Biochemistry. 1984 Oct 9;23(21):4821–4828. doi: 10.1021/bi00316a002. [DOI] [PubMed] [Google Scholar]
- Rau D. C., Parsegian V. A. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys J. 1992 Jan;61(1):246–259. doi: 10.1016/S0006-3495(92)81831-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schellman J. A., Parthasarathy N. X-ray diffraction studies on cation-collapsed DNA. J Mol Biol. 1984 May 25;175(3):313–329. doi: 10.1016/0022-2836(84)90351-6. [DOI] [PubMed] [Google Scholar]
- Sikorav J. L., Pelta J., Livolant F. A liquid crystalline phase in spermidine-condensed DNA. Biophys J. 1994 Oct;67(4):1387–1392. doi: 10.1016/S0006-3495(94)80640-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Widom J., Baldwin R. L. Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6. J Mol Biol. 1980 Dec 25;144(4):431–453. doi: 10.1016/0022-2836(80)90330-7. [DOI] [PubMed] [Google Scholar]
- Widom J., Baldwin R. L. Monomolecular condensation of lambda-DNA induced by cobalt hexamine. Biopolymers. 1983 Jun;22(6):1595–1620. doi: 10.1002/bip.360220612. [DOI] [PubMed] [Google Scholar]
- Wilson R. W., Bloomfield V. A. Counterion-induced condesation of deoxyribonucleic acid. a light-scattering study. Biochemistry. 1979 May 29;18(11):2192–2196. doi: 10.1021/bi00578a009. [DOI] [PubMed] [Google Scholar]