Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 1;26(13):3111–3118. doi: 10.1093/nar/26.13.3111

Prothymosin alpha modulates the interaction of histone H1 with chromatin.

Z Karetsou 1, R Sandaltzopoulos 1, M Frangou-Lazaridis 1, C Y Lai 1, O Tsolas 1, P B Becker 1, T Papamarcaki 1
PMCID: PMC147683  PMID: 9628907

Abstract

Prothymosin alpha (ProTalpha) is an abundant acidic nuclear protein that may be involved in cell proliferation. In our search for its cellular partners, we have recently found that ProTalpha binds to linker histone H1. We now provide further evidence for the physiological relevance of this interaction by immunoisolation of a histone H1-ProTalpha complex from NIH 3T3 cell extracts. A detailed analysis of the interaction between the two proteins suggests contacts between the acidic region of ProTalpha and histone H1. In the context of a physiological chromatin reconstitution reaction, the presence of ProTalpha does not affect incorporation of an amount of histone H1 sufficient to increase the nucleosome repeat length by 20 bp, but prevents association of all further H1. Consistent with this finding, a fraction of histone H1 is released when H1-containing chromatin is challenged with ProTalpha. These results imply at least two different interaction modes of H1 with chromatin, which can be distinguished by their sensitivity to ProTalpha. The properties of ProTalpha suggest a role in fine tuning the stoichiometry and/or mode of interaction of H1 with chromatin.

Full Text

The Full Text of this article is available as a PDF (415.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan J., Mitchell T., Harborne N., Bohm L., Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol. 1986 Feb 20;187(4):591–601. doi: 10.1016/0022-2836(86)90337-2. [DOI] [PubMed] [Google Scholar]
  2. Bates D. L., Thomas J. O. Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res. 1981 Nov 25;9(22):5883–5894. doi: 10.1093/nar/9.22.5883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer E. A., Wilchek M. The use of the avidin-biotin complex as a tool in molecular biology. Methods Biochem Anal. 1980;26:1–45. doi: 10.1002/9780470110461.ch1. [DOI] [PubMed] [Google Scholar]
  4. Becker P. B., Wu C. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol. 1992 May;12(5):2241–2249. doi: 10.1128/mcb.12.5.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blank T. A., Becker P. B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J Mol Biol. 1996 Jul 5;260(1):1–8. doi: 10.1006/jmbi.1996.0377. [DOI] [PubMed] [Google Scholar]
  6. Blank T. A., Sandaltzopoulos R., Becker P. B. Biochemical analysis of chromatin structure and function using Drosophila embryo extracts. Methods. 1997 May;12(1):28–35. doi: 10.1006/meth.1997.0444. [DOI] [PubMed] [Google Scholar]
  7. Bouvet P., Dimitrov S., Wolffe A. P. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 1994 May 15;8(10):1147–1159. doi: 10.1101/gad.8.10.1147. [DOI] [PubMed] [Google Scholar]
  8. Bresnick E. H., Bustin M., Marsaud V., Richard-Foy H., Hager G. L. The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 1992 Jan 25;20(2):273–278. doi: 10.1093/nar/20.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clinton M., Graeve L., el-Dorry H., Rodriguez-Boulan E., Horecker B. L. Evidence for nuclear targeting of prothymosin and parathymosin synthesized in situ. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6608–6612. doi: 10.1073/pnas.88.15.6608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Conteas C. N., Mutchnick M. G., Palmer K. C., Weller F. E., Luk G. D., Naylor P. H., Erdos M. R., Goldstein A. L., Panneerselvam C., Horecker B. L. Cellular levels of thymosin immunoreactive peptides are linked to proliferative events: evidence for a nuclear site of action. Proc Natl Acad Sci U S A. 1990 May;87(9):3269–3273. doi: 10.1073/pnas.87.9.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Croston G. E., Lira L. M., Kadonaga J. T. A general method for purification of H1 histones that are active for repression of basal RNA polymerase II transcription. Protein Expr Purif. 1991 Apr-Jun;2(2-3):162–169. doi: 10.1016/1046-5928(91)90066-r. [DOI] [PubMed] [Google Scholar]
  12. DeGregori J., Kowalik T., Nevins J. R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol. 1995 Aug;15(8):4215–4224. doi: 10.1128/mcb.15.8.4215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dimitrov S., Wolffe A. P. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence. EMBO J. 1996 Nov 1;15(21):5897–5906. [PMC free article] [PubMed] [Google Scholar]
  14. Ding H. F., Bustin M., Hansen U. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14. Mol Cell Biol. 1997 Oct;17(10):5843–5855. doi: 10.1128/mcb.17.10.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Díaz-Jullien C., Pérez-Estévez A., Covelo G., Freire M. Prothymosin alpha binds histones in vitro and shows activity in nucleosome assembly assay. Biochim Biophys Acta. 1996 Sep 5;1296(2):219–227. doi: 10.1016/0167-4838(96)00072-6. [DOI] [PubMed] [Google Scholar]
  16. Earnshaw W. C. Anionic regions in nuclear proteins. J Cell Biol. 1987 Oct;105(4):1479–1482. doi: 10.1083/jcb.105.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Earnshaw W. C., Honda B. M., Laskey R. A., Thomas J. O. Assembly of nucleosomes: the reaction involving X. laevis nucleoplasmin. Cell. 1980 Sep;21(2):373–383. doi: 10.1016/0092-8674(80)90474-2. [DOI] [PubMed] [Google Scholar]
  18. Economou M., Seferiadis K., Frangou-Lazaridis M., Horecker B. L., Tsolas O. Isolation and partial characterization of prothymosin alpha from porcine tissues. FEBS Lett. 1988 Jun 20;233(2):342–346. doi: 10.1016/0014-5793(88)80456-3. [DOI] [PubMed] [Google Scholar]
  19. Eilers M., Schirm S., Bishop J. M. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J. 1991 Jan;10(1):133–141. doi: 10.1002/j.1460-2075.1991.tb07929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Eschenfeldt W. H., Berger S. L. The human prothymosin alpha gene is polymorphic and induced upon growth stimulation: evidence using a cloned cDNA. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9403–9407. doi: 10.1073/pnas.83.24.9403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Frillingos S., Frangou-Lazaridis M., Seferiadis K., Hulmes J. D., Pan Y. C., Tsolas O. Isolation and partial sequence of goat spleen prothymosin alpha. Mol Cell Biochem. 1991 Nov 13;108(1):85–94. doi: 10.1007/BF00239545. [DOI] [PubMed] [Google Scholar]
  22. Gast K., Damaschun H., Eckert K., Schulze-Forster K., Maurer H. R., Müller-Frohne M., Zirwer D., Czarnecki J., Damaschun G. Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry. 1995 Oct 10;34(40):13211–13218. doi: 10.1021/bi00040a037. [DOI] [PubMed] [Google Scholar]
  23. Gómez-Márquez J., Segade F., Dosil M., Pichel J. G., Bustelo X. R., Freire M. The expression of prothymosin alpha gene in T lymphocytes and leukemic lymphoid cells is tied to lymphocyte proliferation. J Biol Chem. 1989 May 25;264(15):8451–8454. [PubMed] [Google Scholar]
  24. Haritos A. A., Goodall G. J., Horecker B. L. Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1008–1011. doi: 10.1073/pnas.81.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Haritos A. A., Tsolas O., Horecker B. L. Distribution of prothymosin alpha in rat tissues. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1391–1393. doi: 10.1073/pnas.81.5.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hayes J. J., Wolffe A. P. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6415–6419. doi: 10.1073/pnas.90.14.6415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ito T., Bulger M., Kobayashi R., Kadonaga J. T. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol. 1996 Jun;16(6):3112–3124. doi: 10.1128/mcb.16.6.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kamakaka R. T., Thomas J. O. Chromatin structure of transcriptionally competent and repressed genes. EMBO J. 1990 Dec;9(12):3997–4006. doi: 10.1002/j.1460-2075.1990.tb07621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Karpov V. L., Bavykin S. G., Preobrazhenskaya O. V., Belyavsky A. V., Mirzabekov A. D. Alignment of nucleosomes along DNA and organization of spacer DNA in Drosophila chromatin. Nucleic Acids Res. 1982 Jul 24;10(14):4321–4337. doi: 10.1093/nar/10.14.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kleinschmidt J. A., Dingwall C., Maier G., Franke W. W. Molecular characterization of a karyophilic, histone-binding protein: cDNA cloning, amino acid sequence and expression of nuclear protein N1/N2 of Xenopus laevis. EMBO J. 1986 Dec 20;5(13):3547–3552. doi: 10.1002/j.1460-2075.1986.tb04681.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Lauritzen E., Masson M., Rubin I., Holm A. Dot immunobinding and immunoblotting of picogram and nanogram quantities of small peptides on activated nitrocellulose. J Immunol Methods. 1990 Aug 7;131(2):257–267. doi: 10.1016/0022-1759(90)90197-4. [DOI] [PubMed] [Google Scholar]
  33. Makarova T., Grebenshikov N., Egorov C., Vartapetian A., Bogdanov A. Prothymosin alpha is an evolutionary conserved protein covalently linked to a small RNA. FEBS Lett. 1989 Nov 6;257(2):247–250. doi: 10.1016/0014-5793(89)81544-3. [DOI] [PubMed] [Google Scholar]
  34. Manrow R. E., Sburlati A. R., Hanover J. A., Berger S. L. Nuclear targeting of prothymosin alpha. J Biol Chem. 1991 Feb 25;266(6):3916–3924. [PubMed] [Google Scholar]
  35. Mori M., Barnard G. F., Staniunas R. J., Jessup J. M., Steele G. D., Jr, Chen L. B. Prothymosin-alpha mRNA expression correlates with that of c-myc in human colon cancer. Oncogene. 1993 Oct;8(10):2821–2826. [PubMed] [Google Scholar]
  36. Nacheva G. A., Guschin D. Y., Preobrazhenskaya O. V., Karpov V. L., Ebralidse K. K., Mirzabekov A. D. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell. 1989 Jul 14;58(1):27–36. doi: 10.1016/0092-8674(89)90399-1. [DOI] [PubMed] [Google Scholar]
  37. Nelson P. P., Albright S. C., Wiseman J. M., Garrard W. T. Reassociation of histone H1 with nucleosomes. J Biol Chem. 1979 Nov 25;254(22):11751–11760. [PubMed] [Google Scholar]
  38. Nightingale K. P., Pruss D., Wolffe A. P. A single high affinity binding site for histone H1 in a nucleosome containing the Xenopus borealis 5 S ribosomal RNA gene. J Biol Chem. 1996 Mar 22;271(12):7090–7094. doi: 10.1074/jbc.271.12.7090. [DOI] [PubMed] [Google Scholar]
  39. Panneerselvam C., Wellner D., Horecker B. L. The amino acid sequence of bovine thymus prothymosin alpha. Arch Biochem Biophys. 1988 Sep;265(2):454–457. doi: 10.1016/0003-9861(88)90149-x. [DOI] [PubMed] [Google Scholar]
  40. Papamarcaki T., Tsolas O. Prothymosin alpha binds to histone H1 in vitro. FEBS Lett. 1994 May 23;345(1):71–75. doi: 10.1016/0014-5793(94)00439-0. [DOI] [PubMed] [Google Scholar]
  41. Rodríguez-Campos A., Shimamura A., Worcel A. Assembly and properties of chromatin containing histone H1. J Mol Biol. 1989 Sep 5;209(1):135–150. doi: 10.1016/0022-2836(89)90177-0. [DOI] [PubMed] [Google Scholar]
  42. Russo I., Barboro P., Alberti I., Parodi S., Balbi C., Allera C., Lazzarini G., Patrone E. Role of H1 in chromatin folding. A thermodynamic study of chromatin reconstitution by differential scanning calorimetry. Biochemistry. 1995 Jan 10;34(1):301–311. doi: 10.1021/bi00001a037. [DOI] [PubMed] [Google Scholar]
  43. Sandaltzopoulos R., Blank T., Becker P. B. Transcriptional repression by nucleosomes but not H1 in reconstituted preblastoderm Drosophila chromatin. EMBO J. 1994 Jan 15;13(2):373–379. doi: 10.1002/j.1460-2075.1994.tb06271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sburlati A. R., Manrow R. E., Berger S. L. Prothymosin alpha antisense oligomers inhibit myeloma cell division. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):253–257. doi: 10.1073/pnas.88.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Segers A., Muyldermans S., Wyns L. The interaction of histone H5 and its globular domain with core particles, depleted chromatosomes, polynucleosomes, and a DNA decamer. J Biol Chem. 1991 Jan 25;266(3):1502–1508. [PubMed] [Google Scholar]
  46. Shen X., Gorovsky M. A. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell. 1996 Aug 9;86(3):475–483. doi: 10.1016/s0092-8674(00)80120-8. [DOI] [PubMed] [Google Scholar]
  47. Srebreva L., Zlatanova J. Specificity studies on anti-histone H1 antibodies obtained by different immunization methods. FEBS Lett. 1986 May 5;200(1):123–127. doi: 10.1016/0014-5793(86)80523-3. [DOI] [PubMed] [Google Scholar]
  48. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tsitsiloni O. E., Stiakakis J., Koutselinis A., Gogas J., Markopoulos C., Yialouris P., Bekris S., Panoussopoulos D., Kiortsis V., Voelter W. Expression of alpha-thymosins in human tissues in normal and abnormal growth. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9504–9507. doi: 10.1073/pnas.90.20.9504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vareli K., Frangou-Lazaridis M., Tsolas O. Prothymosin alpha mRNA levels vary with c-myc expression during tissue proliferation, viral infection and heat shock. FEBS Lett. 1995 Sep 11;371(3):337–340. doi: 10.1016/0014-5793(95)00938-6. [DOI] [PubMed] [Google Scholar]
  51. Vareli K., Tsolas O., Frangou-Lazaridis M. Regulation of prothymosin alpha during the cell cycle. Eur J Biochem. 1996 Jun 15;238(3):799–806. doi: 10.1111/j.1432-1033.1996.0799w.x. [DOI] [PubMed] [Google Scholar]
  52. Verreault A., Kaufman P. D., Kobayashi R., Stillman B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell. 1996 Oct 4;87(1):95–104. doi: 10.1016/s0092-8674(00)81326-4. [DOI] [PubMed] [Google Scholar]
  53. Watts J. D., Cary P. D., Sautiere P., Crane-Robinson C. Thymosins: both nuclear and cytoplasmic proteins. Eur J Biochem. 1990 Sep 24;192(3):643–651. doi: 10.1111/j.1432-1033.1990.tb19271.x. [DOI] [PubMed] [Google Scholar]
  54. Weintraub H. Histone-H1-dependent chromatin superstructures and the suppression of gene activity. Cell. 1984 Aug;38(1):17–27. doi: 10.1016/0092-8674(84)90522-1. [DOI] [PubMed] [Google Scholar]
  55. Wolffe A. P. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1. EMBO J. 1989 Feb;8(2):527–537. doi: 10.1002/j.1460-2075.1989.tb03407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  57. Zlatanova J., van Holde K. The linker histones and chromatin structure: new twists. Prog Nucleic Acid Res Mol Biol. 1996;52:217–259. doi: 10.1016/s0079-6603(08)60968-x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES