Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 1;26(13):3194–3201. doi: 10.1093/nar/26.13.3194

A novel assay of 8-oxo-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity in cultured cells and its use for evaluation of cadmium(II) inhibition of this activity.

K Bialkowski 1, K S Kasprzak 1
PMCID: PMC147685  PMID: 9628918

Abstract

8-Oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) is a product of oxidative modification of dGTP, thatcan be misincorporated into DNA, causing AT-->CG mutations. Cells are protected against 8-oxo-dGTP by 8-oxo-dGTP 5'-pyrophosphohydrolases (8-oxo-dGTP-ases) that convert it to 8-oxo-dGMP. Thus, inhibition of 8-oxo-dGTPases may lead to cancer. To elucidate the involvement of 8-oxo-dGTPases in carcinogenesis, an assay of the 8-oxo-dGTPase activity is required. This paper presents such an assay developed for Chinese hamster ovary (CHO) cells that can be applied to any biological material. It includes: (i) a convenient method for preparing 8-oxo-2'-deoxyguanosine 5'-phosphates; (ii) an HPLC/UV quantification of 8-oxo-dGTP hydrolysis products and (iii) separation of 8-oxo-dGTPase activity from interfering 8-oxo-dGTP phosphatase(s). The 8-oxo-dGTPase activity of CHO cells depends on magnesium, has a pH optimum of 8.5, Km for 8-oxo-dGTP of 9.3 microM, and is inhibited by 8-oxo-dGDP, the product of interfering 8-oxo-dGTP phosphatases. The latter must be removed from the assayed samples by ultrafiltration through 30 kDa cut-off membranes. The method was used to test the inhibition by cadmium ions of the activity of 8-oxo-dGTPase in CHO cells. The cells cultured with 0.3-3 microM cadmium(II) acetate for up to 24 h had their 8-oxo-dGTPase activity suppressed in a Cd(II) concentration-dependent manner, down to 70% of the control value.

Full Text

The Full Text of this article is available as a PDF (153.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama M., Maki H., Sekiguchi M., Horiuchi T. A specific role of MutT protein: to prevent dG.dA mispairing in DNA replication. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3949–3952. doi: 10.1073/pnas.86.11.3949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bessman M. J., Frick D. N., O'Handley S. F. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem. 1996 Oct 11;271(41):25059–25062. doi: 10.1074/jbc.271.41.25059. [DOI] [PubMed] [Google Scholar]
  3. Bhatnagar S. K., Bessman M. J. Studies on the mutator gene, mutT of Escherichia coli. Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. J Biol Chem. 1988 Jun 25;263(18):8953–8957. [PubMed] [Google Scholar]
  4. Cai J. P., Kakuma T., Tsuzuki T., Sekiguchi M. cDNA and genomic sequences for rat 8-oxo-dGTPase that prevents occurrence of spontaneous mutations due to oxidation of guanine nucleotides. Carcinogenesis. 1995 Oct;16(10):2343–2350. doi: 10.1093/carcin/16.10.2343. [DOI] [PubMed] [Google Scholar]
  5. Cheng K. C., Cahill D. S., Kasai H., Nishimura S., Loeb L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992 Jan 5;267(1):166–172. [PubMed] [Google Scholar]
  6. Grollman A. P., Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993 Jul;9(7):246–249. doi: 10.1016/0168-9525(93)90089-z. [DOI] [PubMed] [Google Scholar]
  7. Hatahet Z., Purmal A. A., Wallace S. S. A novel method for site specific introduction of single model oxidative DNA lesions into oligodeoxyribonucleotides. Nucleic Acids Res. 1993 Apr 11;21(7):1563–1568. doi: 10.1093/nar/21.7.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayakawa H., Taketomi A., Sakumi K., Kuwano M., Sekiguchi M. Generation and elimination of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate, a mutagenic substrate for DNA synthesis, in human cells. Biochemistry. 1995 Jan 10;34(1):89–95. doi: 10.1021/bi00001a011. [DOI] [PubMed] [Google Scholar]
  9. Kakuma T., Nishida J., Tsuzuki T., Sekiguchi M. Mouse MTH1 protein with 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphatase activity that prevents transversion mutation. cDNA cloning and tissue distribution. J Biol Chem. 1995 Oct 27;270(43):25942–25948. doi: 10.1074/jbc.270.43.25942. [DOI] [PubMed] [Google Scholar]
  10. Kamath-Loeb A. S., Hizi A., Kasai H., Loeb L. A. Incorporation of the guanosine triphosphate analogs 8-oxo-dGTP and 8-NH2-dGTP by reverse transcriptases and mammalian DNA polymerases. J Biol Chem. 1997 Feb 28;272(9):5892–5898. doi: 10.1074/jbc.272.9.5892. [DOI] [PubMed] [Google Scholar]
  11. Kang D., Nishida J., Iyama A., Nakabeppu Y., Furuichi M., Fujiwara T., Sekiguchi M., Takeshige K. Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J Biol Chem. 1995 Jun 16;270(24):14659–14665. doi: 10.1074/jbc.270.24.14659. [DOI] [PubMed] [Google Scholar]
  12. Kasai H., Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 1984 Feb 24;12(4):2137–2145. doi: 10.1093/nar/12.4.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maki H., Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature. 1992 Jan 16;355(6357):273–275. doi: 10.1038/355273a0. [DOI] [PubMed] [Google Scholar]
  14. Mikhailova M. V., Littlefield N. A., Hass B. S., Poirier L. A., Chou M. W. Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells. Cancer Lett. 1997 May 19;115(2):141–148. doi: 10.1016/s0304-3835(97)04720-4. [DOI] [PubMed] [Google Scholar]
  15. Mo J. Y., Maki H., Sekiguchi M. Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: sanitization of nucleotide pool. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11021–11025. doi: 10.1073/pnas.89.22.11021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pavlov Y. I., Minnick D. T., Izuta S., Kunkel T. A. DNA replication fidelity with 8-oxodeoxyguanosine triphosphate. Biochemistry. 1994 Apr 19;33(15):4695–4701. doi: 10.1021/bi00181a029. [DOI] [PubMed] [Google Scholar]
  17. Porter D. W., Nelson V. C., Fivash M. J., Jr, Kasprzak K. S. Mechanistic studies of the inhibition of MutT dGTPase by the carcinogenic metal Ni(II). Chem Res Toxicol. 1996 Dec;9(8):1375–1381. doi: 10.1021/tx9600816. [DOI] [PubMed] [Google Scholar]
  18. Porter D. W., Yakushiji H., Nakabeppu Y., Sekiguchi M., Fivash M. J., Jr, Kasprzak K. S. Sensitivity of Escherichia coli (MutT) and human (MTH1) 8-oxo-dGTPases to in vitro inhibition by the carcinogenic metals, nickel(II), copper(II), cobalt(II) and cadmium(II). Carcinogenesis. 1997 Sep;18(9):1785–1791. doi: 10.1093/carcin/18.9.1785. [DOI] [PubMed] [Google Scholar]
  19. Purmal A. A., Kow Y. W., Wallace S. S. 5-Hydroxypyrimidine deoxynucleoside triphosphates are more efficiently incorporated into DNA by exonuclease-free Klenow fragment than 8-oxopurine deoxynucleoside triphosphates. Nucleic Acids Res. 1994 Sep 25;22(19):3930–3935. doi: 10.1093/nar/22.19.3930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H., Sekiguchi M. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem. 1993 Nov 5;268(31):23524–23530. [PubMed] [Google Scholar]
  21. Sekiguchi M. MutT-related error avoidance mechanism for DNA synthesis. Genes Cells. 1996 Feb;1(2):139–145. doi: 10.1046/j.1365-2443.1996.d01-232.x. [DOI] [PubMed] [Google Scholar]
  22. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  23. Taddei F., Hayakawa H., Bouton M., Cirinesi A., Matic I., Sekiguchi M., Radman M. Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science. 1997 Oct 3;278(5335):128–130. doi: 10.1126/science.278.5335.128. [DOI] [PubMed] [Google Scholar]
  24. Tajiri T., Maki H., Sekiguchi M. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. 1995 May;336(3):257–267. doi: 10.1016/0921-8777(94)00062-b. [DOI] [PubMed] [Google Scholar]
  25. Treffers H. P., Spinelli V., Belser N. O. A Factor (or Mutator Gene) Influencing Mutation Rates in Escherichia Coli. Proc Natl Acad Sci U S A. 1954 Nov;40(11):1064–1071. doi: 10.1073/pnas.40.11.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yang J. L., Chao J. I., Lin J. G. Reactive oxygen species may participate in the mutagenicity and mutational spectrum of cadmium in Chinese hamster ovary-K1 cells. Chem Res Toxicol. 1996 Dec;9(8):1360–1367. doi: 10.1021/tx960122y. [DOI] [PubMed] [Google Scholar]
  27. Yanofsky C., Cox E. C., Horn V. The unusual mutagenic specificity of an E. Coli mutator gene. Proc Natl Acad Sci U S A. 1966 Feb;55(2):274–281. doi: 10.1073/pnas.55.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES