Abstract
Two closely related genes, EXO1 and DIN 7, in the budding yeast Saccharomyces cerevisiae have been found to be sequence homologs of the exo1 gene from the fission yeast Schizosaccharomyces pombe . The proteins encoded by these genes belong to the Rad2/XPG and Rad27/FEN-1 families, which are structure-specific nucleases functioning in DNA repair. An XPG nuclease deficiency in humans is one cause of xeroderma pigmentosum and those afflicted display a hypersensitivity to UV light. Deletion of the RAD2 gene in S. cerevisiae also causes UV hypersensitivity, due to a defect in nucleotide excision repair (NER), but residual UV resistance remains. In this report, we describe evidence for the residual repair of UV damage to DNA that is dependent upon Exo1 nuclease. Expression of the EXO1 gene is UV inducible. Genetic analysis indicates that the EXO1 gene is involved in a NER-independent pathway for UV repair, as exo1 rad2 double mutants are more sensitive to UV than either the rad2 or exo1 single mutants. Since the roles of EXO1 in mismatch repair and recombination have been established, double mutants were constructed to examine the possible relationship between the role of EXO1 in UV resistance and its roles in other pathways for repair of UV damaged DNA. The exo1 msh2 , exo1 rad51 , rad2 rad51 and rad2 msh2 double mutants were all more sensitive to UV than their respective pairs of single mutants. This suggests that the observed UV sensitivity of the exo1 deletion mutant is unlikely to be due to its functional deficiencies in MMR, recombination or NER. Further, it suggests that the EXO1 , RAD51 and MSH2 genes control independent mechanisms for the maintenance of UV resistance.
Full Text
The Full Text of this article is available as a PDF (186.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bambara R. A., Murante R. S., Henricksen L. A. Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem. 1997 Feb 21;272(8):4647–4650. doi: 10.1074/jbc.272.8.4647. [DOI] [PubMed] [Google Scholar]
- Bowman K. K., Sidik K., Smith C. A., Taylor J. S., Doetsch P. W., Freyer G. A. A new ATP-independent DNA endonuclease from Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res. 1994 Aug 11;22(15):3026–3032. doi: 10.1093/nar/22.15.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carr A. M., Sheldrick K. S., Murray J. M., al-Harithy R., Watts F. Z., Lehmann A. R. Evolutionary conservation of excision repair in Schizosaccharomyces pombe: evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene. Nucleic Acids Res. 1993 Mar 25;21(6):1345–1349. doi: 10.1093/nar/21.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davey S., Nass M. L., Ferrer J. V., Sidik K., Eisenberger A., Mitchell D. L., Freyer G. A. The fission yeast UVDR DNA repair pathway is inducible. Nucleic Acids Res. 1997 Mar 1;25(5):1002–1008. doi: 10.1093/nar/25.5.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doetsch P. W. What's old is new: an alternative DNA excision repair pathway. Trends Biochem Sci. 1995 Oct;20(10):384–386. doi: 10.1016/s0968-0004(00)89084-2. [DOI] [PubMed] [Google Scholar]
- Fiorentini P., Huang K. N., Tishkoff D. X., Kolodner R. D., Symington L. S. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol. 1997 May;17(5):2764–2773. doi: 10.1128/mcb.17.5.2764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freyer G. A., Davey S., Ferrer J. V., Martin A. M., Beach D., Doetsch P. W. An alternative eukaryotic DNA excision repair pathway. Mol Cell Biol. 1995 Aug;15(8):4572–4577. doi: 10.1128/mcb.15.8.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gangloff S., McDonald J. P., Bendixen C., Arthur L., Rothstein R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol. 1994 Dec;14(12):8391–8398. doi: 10.1128/mcb.14.12.8391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
- Johnson R. E., Kovvali G. K., Prakash L., Prakash S. Requirement of the yeast RTH1 5' to 3' exonuclease for the stability of simple repetitive DNA. Science. 1995 Jul 14;269(5221):238–240. doi: 10.1126/science.7618086. [DOI] [PubMed] [Google Scholar]
- Lieber M. R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays. 1997 Mar;19(3):233–240. doi: 10.1002/bies.950190309. [DOI] [PubMed] [Google Scholar]
- Madura K., Prakash S. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae. J Bacteriol. 1986 Jun;166(3):914–923. doi: 10.1128/jb.166.3.914-923.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCready S., Carr A. M., Lehmann A. R. Repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in the fission yeast Schizosaccharomyces pombe. Mol Microbiol. 1993 Nov;10(4):885–890. doi: 10.1111/j.1365-2958.1993.tb00959.x. [DOI] [PubMed] [Google Scholar]
- McCready S., Cox B. Repair of 6-4 photoproducts in Saccharomyces cerevisiae. Mutat Res. 1993 Mar;293(3):233–240. doi: 10.1016/0921-8777(93)90074-q. [DOI] [PubMed] [Google Scholar]
- McCready S., Cox B. Repair of 6-4 photoproducts in Saccharomyces cerevisiae. Mutat Res. 1993 Mar;293(3):233–240. doi: 10.1016/0921-8777(93)90074-q. [DOI] [PubMed] [Google Scholar]
- Mieczkowski P. A., Fikus M. U., Ciesla Z. Characterization of a novel DNA damage-inducible gene of Saccharomyces cerevisiae, DIN7, which is a structural homolog of the RAD2 and RAD27 DNA repair genes. Mol Gen Genet. 1997 Feb 27;253(6):655–665. doi: 10.1007/s004380050369. [DOI] [PubMed] [Google Scholar]
- Murray J. M., Tavassoli M., al-Harithy R., Sheldrick K. S., Lehmann A. R., Carr A. M., Watts F. Z. Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage. Mol Cell Biol. 1994 Jul;14(7):4878–4888. doi: 10.1128/mcb.14.7.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donovan A., Wood R. D. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature. 1993 May 13;363(6425):185–188. doi: 10.1038/363185a0. [DOI] [PubMed] [Google Scholar]
- Prakash L. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light. J Mol Biol. 1975 Nov 15;98(4):781–795. doi: 10.1016/s0022-2836(75)80010-6. [DOI] [PubMed] [Google Scholar]
- Prakash L. Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae. Mutat Res. 1977 Oct;45(1):13–20. doi: 10.1016/0027-5107(77)90038-0. [DOI] [PubMed] [Google Scholar]
- Reagan M. S., Pittenger C., Siede W., Friedberg E. C. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol. 1995 Jan;177(2):364–371. doi: 10.1128/jb.177.2.364-371.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson G. W., Nicolet C. M., Kalainov D., Friedberg E. C. A yeast excision-repair gene is inducible by DNA damaging agents. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1842–1846. doi: 10.1073/pnas.83.6.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancar A. Mechanisms of DNA excision repair. Science. 1994 Dec 23;266(5193):1954–1956. doi: 10.1126/science.7801120. [DOI] [PubMed] [Google Scholar]
- Scherly D., Nouspikel T., Corlet J., Ucla C., Bairoch A., Clarkson S. G. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature. 1993 May 13;363(6425):182–185. doi: 10.1038/363182a0. [DOI] [PubMed] [Google Scholar]
- Sidik K., Lieberman H. B., Freyer G. A. Repair of DNA damaged by UV light and ionizing radiation by cell-free extracts prepared from Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12112–12116. doi: 10.1073/pnas.89.24.12112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szankasi P., Smith G. R. A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J Biol Chem. 1992 Feb 15;267(5):3014–3023. [PubMed] [Google Scholar]
- Szankasi P., Smith G. R. A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science. 1995 Feb 24;267(5201):1166–1169. doi: 10.1126/science.7855597. [DOI] [PubMed] [Google Scholar]
- Thomas B. J., Rothstein R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics. 1989 Dec;123(4):725–738. doi: 10.1093/genetics/123.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tishkoff D. X., Boerger A. L., Bertrand P., Filosi N., Gaida G. M., Kane M. F., Kolodner R. D. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7487–7492. doi: 10.1073/pnas.94.14.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tishkoff D. X., Filosi N., Gaida G. M., Kolodner R. D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell. 1997 Jan 24;88(2):253–263. doi: 10.1016/s0092-8674(00)81846-2. [DOI] [PubMed] [Google Scholar]
- Unrau P., Wheatcroft R., Cox B. S. Methods for the assay of ultraviolet light-induced pyrimidine dimers in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 May 29;269(3):311–321. doi: 10.1016/0005-2787(72)90117-7. [DOI] [PubMed] [Google Scholar]
- Yajima H., Takao M., Yasuhira S., Zhao J. H., Ishii C., Inoue H., Yasui A. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 1995 May 15;14(10):2393–2399. doi: 10.1002/j.1460-2075.1995.tb07234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonemasu R., McCready S. J., Murray J. M., Osman F., Takao M., Yamamoto K., Lehmann A. R., Yasui A. Characterization of the alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe. Nucleic Acids Res. 1997 Apr 15;25(8):1553–1558. doi: 10.1093/nar/25.8.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]