Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 1;26(13):3090–3096. doi: 10.1093/nar/26.13.3090

Expression, purification and characterization of the recombinant ribonuclease P protein component from Bacillus subtilis.

S Niranjanakumari 1, J C Kurz 1, C A Fierke 1
PMCID: PMC147689  PMID: 9628904

Abstract

Ribonuclease P is a ribonucleoprotein complex that catalyzes the essential 5' maturation of all precursor tRNA molecules. The protein component both alters the conformation of the RNA component and enhances the substrate affinity and specificity. To facilitate biochemical and biophysical studies, the protein component of Bacillus subtilis ribonuclease P (RNase P) was overproduced in Escherichia coli using the native amino acid sequence with the initial 20 codons optimized for expression in E.coli . A simple purification procedure using consecutive cation exchange chromatography steps in the presence and absence of urea was developed to purify large quantities of P protein without contaminating nucleic acids. The identity of the recombinant protein as a cofactor of RNase P was established by its ability to stimulate the activity of the RNA component in low ionic strength buffer in a 1:1 stoichiometry. Circular dichroism studies indicate that P protein is a combination of alpha-helix and beta-sheet secondary structures and is quite stable, with a T m of 67 degrees C. The described methods facilitated the large scale purification of homogeneous, RNA-free P protein required for high resolution crystallographic analyses and may be useful for the preparation of other RNA binding proteins.

Full Text

The Full Text of this article is available as a PDF (125.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. Ribonuclease P: an enzyme with a catalytic RNA subunit. Adv Enzymol Relat Areas Mol Biol. 1989;62:1–36. doi: 10.1002/9780470123089.ch1. [DOI] [PubMed] [Google Scholar]
  2. Baer M. F., Arnez J. G., Guerrier-Takada C., Vioque A., Altman S. Preparation and characterization of RNase P from Escherichia coli. Methods Enzymol. 1990;181:569–582. doi: 10.1016/0076-6879(90)81152-k. [DOI] [PubMed] [Google Scholar]
  3. Baer M. F., Wesolowski D., Altman S. Characterization in vitro of the defect in a temperature-sensitive mutant of the protein subunit of RNase P from Escherichia coli. J Bacteriol. 1989 Dec;171(12):6862–6866. doi: 10.1128/jb.171.12.6862-6866.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baer M., Altman S. A catalytic RNA and its gene from Salmonella typhimurium. Science. 1985 May 24;228(4702):999–1002. doi: 10.1126/science.2408335. [DOI] [PubMed] [Google Scholar]
  5. Beebe J. A., Fierke C. A. A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry. 1994 Aug 30;33(34):10294–10304. doi: 10.1021/bi00200a009. [DOI] [PubMed] [Google Scholar]
  6. Bothwell A. L., Garber R. L., Altman S. Nucleotide sequence and in vitro processing of a precursor molecule to Escherichia coli 4.5 S RNA. J Biol Chem. 1976 Dec 10;251(23):7709–7716. [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Brown J. W., Haas E. S., James B. D., Hunt D. A., Liu J. S., Pace N. R. Phylogenetic analysis and evolution of RNase P RNA in proteobacteria. J Bacteriol. 1991 Jun;173(12):3855–3863. doi: 10.1128/jb.173.12.3855-3863.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown J. W., Haas E. S., Pace N. R. Characterization of ribonuclease P RNAs from thermophilic bacteria. Nucleic Acids Res. 1993 Feb 11;21(3):671–679. doi: 10.1093/nar/21.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown J. W. The ribonuclease P database. Nucleic Acids Res. 1998 Jan 1;26(1):351–352. doi: 10.1093/nar/26.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  12. Chen J. L., Nolan J. M., Harris M. E., Pace N. R. Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J. 1998 Mar 2;17(5):1515–1525. doi: 10.1093/emboj/17.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Darr S. C., Brown J. W., Pace N. R. The varieties of ribonuclease P. Trends Biochem Sci. 1992 May;17(5):178–182. doi: 10.1016/0968-0004(92)90262-8. [DOI] [PubMed] [Google Scholar]
  14. Davanloo P., Rosenberg A. H., Dunn J. J., Studier F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035–2039. doi: 10.1073/pnas.81.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  16. Goldman E., Rosenberg A. H., Zubay G., Studier F. W. Consecutive low-usage leucine codons block translation only when near the 5' end of a message in Escherichia coli. J Mol Biol. 1995 Feb 3;245(5):467–473. doi: 10.1006/jmbi.1994.0038. [DOI] [PubMed] [Google Scholar]
  17. Gopalan V., Baxevanis A. D., Landsman D., Altman S. Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. J Mol Biol. 1997 Apr 11;267(4):818–829. doi: 10.1006/jmbi.1997.0906. [DOI] [PubMed] [Google Scholar]
  18. Guerrier-Takada C., Altman S. Catalytic activity of an RNA molecule prepared by transcription in vitro. Science. 1984 Jan 20;223(4633):285–286. doi: 10.1126/science.6199841. [DOI] [PubMed] [Google Scholar]
  19. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  20. Harris M. E., Kazantsev A. V., Chen J. L., Pace N. R. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking. RNA. 1997 Jun;3(6):561–576. [PMC free article] [PubMed] [Google Scholar]
  21. Harris M. E., Pace N. R. Analysis of the tertiary structure of bacterial RNase P RNA. Mol Biol Rep. 1995;22(2-3):115–123. doi: 10.1007/BF00988715. [DOI] [PubMed] [Google Scholar]
  22. Hirel P. H., Schmitter M. J., Dessen P., Fayat G., Blanquet S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8247–8251. doi: 10.1073/pnas.86.21.8247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Khurana R., Hate A. T., Nath U., Udgaonkar J. B. pH dependence of the stability of barstar to chemical and thermal denaturation. Protein Sci. 1995 Jun;4(6):1133–1144. doi: 10.1002/pro.5560040612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kim J. J., Kilani A. F., Zhan X., Altman S., Liu F. The protein cofactor allows the sequence of an RNase P ribozyme to diversify by maintaining the catalytically active structure of the enzyme. RNA. 1997 Jun;3(6):613–623. [PMC free article] [PubMed] [Google Scholar]
  25. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9223–9227. doi: 10.1073/pnas.91.20.9223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kurz J. C., Niranjanakumari S., Fierke C. A. Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry. 1998 Feb 24;37(8):2393–2400. doi: 10.1021/bi972530m. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Myers J. K., Pace C. N., Scholtz J. M. Helix propensities are identical in proteins and peptides. Biochemistry. 1997 Sep 9;36(36):10923–10929. doi: 10.1021/bi9707180. [DOI] [PubMed] [Google Scholar]
  30. Nagai K. RNA-protein complexes. Curr Opin Struct Biol. 1996 Feb;6(1):53–61. doi: 10.1016/s0959-440x(96)80095-9. [DOI] [PubMed] [Google Scholar]
  31. Ogasawara N., Yoshikawa H. Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol. 1992 Mar;6(5):629–634. doi: 10.1111/j.1365-2958.1992.tb01510.x. [DOI] [PubMed] [Google Scholar]
  32. Pace C. N. Conformational stability of globular proteins. Trends Biochem Sci. 1990 Jan;15(1):14–17. doi: 10.1016/0968-0004(90)90124-t. [DOI] [PubMed] [Google Scholar]
  33. Pace N. R., Brown J. W. Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J Bacteriol. 1995 Apr;177(8):1919–1928. doi: 10.1128/jb.177.8.1919-1928.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pascual A., Vioque A. Cloning, purification and characterization of the protein subunit of ribonuclease P from the cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem. 1996 Oct 1;241(1):17–24. doi: 10.1111/j.1432-1033.1996.0017t.x. [DOI] [PubMed] [Google Scholar]
  35. Peck-Miller K. A., Altman S. Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J Mol Biol. 1991 Sep 5;221(1):1–5. doi: 10.1016/0022-2836(91)80194-y. [DOI] [PubMed] [Google Scholar]
  36. Reich C., Olsen G. J., Pace B., Pace N. R. Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science. 1988 Jan 8;239(4836):178–181. doi: 10.1126/science.3122322. [DOI] [PubMed] [Google Scholar]
  37. Rivera-León R., Green C. J., Vold B. S. High-level expression of soluble recombinant RNase P protein from Escherichia coli. J Bacteriol. 1995 May;177(9):2564–2566. doi: 10.1128/jb.177.9.2564-2566.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rosenberg A. H., Goldman E., Dunn J. J., Studier F. W., Zubay G. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol. 1993 Feb;175(3):716–722. doi: 10.1128/jb.175.3.716-722.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  42. Schedl P., Primakoff P. Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2091–2095. doi: 10.1073/pnas.70.7.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stams T., Niranjanakumari S., Fierke C. A., Christianson D. W. Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science. 1998 May 1;280(5364):752–755. doi: 10.1126/science.280.5364.752. [DOI] [PubMed] [Google Scholar]
  44. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  45. Studier F. W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol. 1991 May 5;219(1):37–44. doi: 10.1016/0022-2836(91)90855-z. [DOI] [PubMed] [Google Scholar]
  46. Svärd S. G., Kirsebom L. A. Determinants of Escherichia coli RNase P cleavage site selection: a detailed in vitro and in vivo analysis. Nucleic Acids Res. 1993 Feb 11;21(3):427–434. doi: 10.1093/nar/21.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Talbot S. J., Altman S. Gel retardation analysis of the interaction between C5 protein and M1 RNA in the formation of the ribonuclease P holoenzyme from Escherichia coli. Biochemistry. 1994 Feb 15;33(6):1399–1405. doi: 10.1021/bi00172a016. [DOI] [PubMed] [Google Scholar]
  48. Tallsjö A., Kirsebom L. A. Product release is a rate-limiting step during cleavage by the catalytic RNA subunit of Escherichia coli RNase P. Nucleic Acids Res. 1993 Jan 11;21(1):51–57. doi: 10.1093/nar/21.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vioque A., Arnez J., Altman S. Protein-RNA interactions in the RNase P holoenzyme from Escherichia coli. J Mol Biol. 1988 Aug 20;202(4):835–848. doi: 10.1016/0022-2836(88)90562-1. [DOI] [PubMed] [Google Scholar]
  50. Westhof E., Wesolowski D., Altman S. Mapping in three dimensions of regions in a catalytic RNA protected from attack by an Fe(II)-EDTA reagent. J Mol Biol. 1996 May 17;258(4):600–613. doi: 10.1006/jmbi.1996.0272. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES