Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 1;26(13):3300–3304. doi: 10.1093/nar/26.13.3300

Template-directed photoligation of oligodeoxyribonucleotides via 4-thiothymidine.

J Liu 1, J S Taylor 1
PMCID: PMC147698  PMID: 9628933

Abstract

Non-enzymatic, template-directed ligation of oligonucleotides in aqueous solution has been of great interest because of its potential synthetic and biomedical utility and implications for the origin of life. Though there are many methods for template-directed chemical ligation of oligonucleotides, there are only three reported photochemical methods. In the first report, template-directed photoligation was effected by cyclobutane dimer formation between the 5'- and 3'-terminal thymidines of two oligonucleotides with >290 nm light, which also damages DNA itself. To make the photochemistry of native DNA more selective, we have replaced the thymidine at the 5'-end of one oligonucleotide with 4-thiothymidine (s4T) and show that it photoreacts at 366 nm with a T at the 3'-endof another oligonucleotide in the presence of a complementary template. When a single mismatch is introduced opposite either the s4T or its adjoining T, the ligation efficiency drops by a factor of five or more. We also show that by linking the two ends of the oligonucleotides together, photoligation can be used to form circular DNA molecules and to 'photopadlock' circular DNA templates. Thus, s4T-mediated photo-ligation may have applications to phototriggered antisense-based or antigene-based genetic tools, diagnostic agents and drugs, especially for those situations in which chemical or enzyme-mediated ligation isundesirable or impossible, for example inside a cell.

Full Text

The Full Text of this article is available as a PDF (162.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley G. W., Kushlan D. M. Chemical synthesis of oligodeoxynucleotide dumbbells. Biochemistry. 1991 Mar 19;30(11):2927–2933. doi: 10.1021/bi00225a028. [DOI] [PubMed] [Google Scholar]
  2. Bartholomew B., Braun B. R., Kassavetis G. A., Geiduschek E. P. Probing close DNA contacts of RNA polymerase III transcription complexes with the photoactive nucleoside 4-thiodeoxythymidine. J Biol Chem. 1994 Jul 8;269(27):18090–18095. [PubMed] [Google Scholar]
  3. Churchill M. E., Peak J. G., Peak M. J. Correlation between cell survival and DNA single-strand break repair proficiency in the Chinese hamster ovary cell lines AA8 and EM9 irradiated with 365-nm ultraviolet-A radiation. Photochem Photobiol. 1991 Feb;53(2):229–236. doi: 10.1111/j.1751-1097.1991.tb03927.x. [DOI] [PubMed] [Google Scholar]
  4. Dolinnaya N. G., Blumenfeld M., Merenkova I. N., Oretskaya T. S., Krynetskaya N. F., Ivanovskaya M. G., Vasseur M., Shabarova Z. A. Oligonucleotide circularization by template-directed chemical ligation. Nucleic Acids Res. 1993 Nov 25;21(23):5403–5407. doi: 10.1093/nar/21.23.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dolinnaya N. G., Sokolova N. I., Gryaznova O. I., Shabarova Z. A. Site-directed modification of DNA duplexes by chemical ligation. Nucleic Acids Res. 1988 May 11;16(9):3721–3738. doi: 10.1093/nar/16.9.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolinnaya N. G., Sokolova N. I., Gryaznova O. I., Shabarova Z. A. Site-directed modification of DNA duplexes by chemical ligation. Nucleic Acids Res. 1988 May 11;16(9):3721–3738. doi: 10.1093/nar/16.9.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dos Santos D. V., Vianna A. L., Fourrey J. L., Favre A. Folding of DNA substrate-hairpin ribozyme domains: use of deoxy 4-thiouridine as an intrinsic photolabel. Nucleic Acids Res. 1993 Jan 25;21(2):201–207. doi: 10.1093/nar/21.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gryaznov S. M., Letsinger R. L. Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups. Nucleic Acids Res. 1993 Mar 25;21(6):1403–1408. doi: 10.1093/nar/21.6.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gryaznov S. M., Schultz R., Chaturvedi S. K., Letsinger R. L. Enhancement of selectivity in recognition of nucleic acids via chemical autoligation. Nucleic Acids Res. 1994 Jun 25;22(12):2366–2369. doi: 10.1093/nar/22.12.2366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kanaya E., Yanagawa H. Template-directed polymerization of oligoadenylates using cyanogen bromide. Biochemistry. 1986 Nov 18;25(23):7423–7430. doi: 10.1021/bi00371a026. [DOI] [PubMed] [Google Scholar]
  11. Landegren U., Kaiser R., Sanders J., Hood L. A ligase-mediated gene detection technique. Science. 1988 Aug 26;241(4869):1077–1080. doi: 10.1126/science.3413476. [DOI] [PubMed] [Google Scholar]
  12. Lewis R. J., Hanawalt P. C. Ligation of oligonucleotides by pyrimidine dimers--a missing 'link' in the origin of life? Nature. 1982 Jul 22;298(5872):393–396. doi: 10.1038/298393a0. [DOI] [PubMed] [Google Scholar]
  13. Li T., Nicolaou K. C. Chemical self-replication of palindromic duplex DNA. Nature. 1994 May 19;369(6477):218–221. doi: 10.1038/369218a0. [DOI] [PubMed] [Google Scholar]
  14. Li T., Weinstein D. S., Nicolaou K. The chemical end-ligation of homopyrimidine oligodeoxyribonucleotides within a DNA triple helix. Chem Biol. 1997 Mar;4(3):209–214. doi: 10.1016/s1074-5521(97)90290-8. [DOI] [PubMed] [Google Scholar]
  15. Luo J., Bergstrom D. E., Barany F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 1996 Aug 1;24(15):3071–3078. doi: 10.1093/nar/24.15.3071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ma M. Y., Reid L. S., Climie S. C., Lin W. C., Kuperman R., Sumner-Smith M., Barnett R. W. Design and synthesis of RNA miniduplexes via a synthetic linker approach. Biochemistry. 1993 Feb 23;32(7):1751–1758. doi: 10.1021/bi00058a008. [DOI] [PubMed] [Google Scholar]
  17. Naylor R., Gilham P. T. Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry. 1966 Aug;5(8):2722–2728. doi: 10.1021/bi00872a032. [DOI] [PubMed] [Google Scholar]
  18. Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B. P., Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 1994 Sep 30;265(5181):2085–2088. doi: 10.1126/science.7522346. [DOI] [PubMed] [Google Scholar]
  19. Pritchard C. E., Southern E. M. Effects of base mismatches on joining of short oligodeoxynucleotides by DNA ligases. Nucleic Acids Res. 1997 Sep 1;25(17):3403–3407. doi: 10.1093/nar/25.17.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rohatgi R., Bartel D. P., Szostak J. W. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J Am Chem Soc. 1996 Apr 10;118(14):3332–3339. doi: 10.1021/ja953712b. [DOI] [PubMed] [Google Scholar]
  21. Rubin E., Rumney S., 4th, Wang S., Kool E. T. Convergent DNA synthesis: a non-enzymatic dimerization approach to circular oligodeoxynucleotides. Nucleic Acids Res. 1995 Sep 11;23(17):3547–3553. doi: 10.1093/nar/23.17.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sievers D., von Kiedrowski G. Self-replication of complementary nucleotide-based oligomers. Nature. 1994 May 19;369(6477):221–224. doi: 10.1038/369221a0. [DOI] [PubMed] [Google Scholar]
  23. Sokolova N. I., Ashirbekova D. T., Dolinnaya N. G., Shabarova Z. A. Chemical reactions within DNA duplexes. Cyanogen bromide as an effective oligodeoxyribonucleotide coupling agent. FEBS Lett. 1988 May 9;232(1):153–155. doi: 10.1016/0014-5793(88)80406-x. [DOI] [PubMed] [Google Scholar]
  24. Wang S., Kool E. T. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucleic Acids Res. 1994 Jun 25;22(12):2326–2333. doi: 10.1093/nar/22.12.2326. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES