Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 15;26(14):3323–3332. doi: 10.1093/nar/26.14.3323

Thermal stability of DNA.

R D Blake 1, S G Delcourt 1
PMCID: PMC147704  PMID: 9649614

Abstract

Tij and Delta Hij for stacking of pair i upon j in DNA have been obtained over the range 0.034-0.114 M Na+from high-resolution melting curves of well-behaved synthetic tandemly repeating inserts in recombinant pN/MCS plasmids. Results are consistent with neighbor-pair thermodynamic additivity, where the stability constant, sij , for different domains of length N depend quantitatively on the product of stability constants for each individual pair in domains, sijN . Unit transition enthalpies with average errors less than +/-5%, were determined by analysis of two-state equilibria associated with the melting of internal domains and verified from variations of Tij with [Na+]. Enthalpies increase with Tij , in close agreement with the empirical function: Delta Hij = 52.78@ Tij - 9489, and in parallel with a smaller increase in Delta Sij . Delta Hij and Delta Sij are in good agreement with the results of an extensive compilation of published Delta Hcal and Delta Scal for synthetic and natural DNAs. Neighbor-pair additivity was also observed for (dA@dT)-tracts at melting temperatures; no evidence could be detected of the familiar and unusual structural features that characterize tracts at lower temperatures. The energetic effects of loops were determined from the melting behavior of repeating inserts installed between (G+C)-rich barrier domains in the pN/MCS plasmids. A unique set of values for the cooperativity, loop exponent and stiffness parameters were found applicable to internal domains of all sizes and sequences. Statistical mechanical curves calculated with values of Tij([Na+]) , Delta Hij and these loop parameters are in good agreement with observation.

Full Text

The Full Text of this article is available as a PDF (216.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applequist J. Higher-order phase transitions in two-stranded macromolecules. J Chem Phys. 1969 Jan 15;50(2):600–609. doi: 10.1063/1.1671105. [DOI] [PubMed] [Google Scholar]
  2. Aymami J., Coll M., Frederick C. A., Wang A. H., Rich A. The propeller DNA conformation of poly(dA).poly(dT). Nucleic Acids Res. 1989 Apr 25;17(8):3229–3245. doi: 10.1093/nar/17.8.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blake R. D., Delcourt S. G. Loop energy in DNA. Biopolymers. 1987 Dec;26(12):2009–2026. doi: 10.1002/bip.360261204. [DOI] [PubMed] [Google Scholar]
  4. Blake R. D., Delcourt S. G. Thermodynamic effects of formamide on DNA stability. Nucleic Acids Res. 1996 Jun 1;24(11):2095–2103. doi: 10.1093/nar/24.11.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blake R. D., Hydorn T. G. Spectral analysis for base composition of DNA undergoing melting. J Biochem Biophys Methods. 1985 Nov;11(6):307–316. doi: 10.1016/0165-022x(85)90023-5. [DOI] [PubMed] [Google Scholar]
  6. Blake R. D., Lefoley S. G. Spectral analysis of high resolution direct-derivative melting curves of DNA for instantaneous and total base composition. Biochim Biophys Acta. 1978 Apr 27;518(2):233–246. doi: 10.1016/0005-2787(78)90180-6. [DOI] [PubMed] [Google Scholar]
  7. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan S. S., Austin R. H., Mukerji I., Spiro T. G. Temperature-dependent ultraviolet resonance Raman spectroscopy of the premelting state of dA.dT DNA. Biophys J. 1997 Apr;72(4):1512–1520. doi: 10.1016/S0006-3495(97)78799-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chan S. S., Breslauer K. J., Austin R. H., Hogan M. E. Thermodynamics and premelting conformational changes of phased (dA)5 tracts. Biochemistry. 1993 Nov 9;32(44):11776–11784. doi: 10.1021/bi00095a005. [DOI] [PubMed] [Google Scholar]
  10. Coll M., Frederick C. A., Wang A. H., Rich A. A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8385–8389. doi: 10.1073/pnas.84.23.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crothers D. M. Calculation of melting curves for DNA. Biopolymers. 1968 Oct;6(10):1391–1404. doi: 10.1002/bip.1968.360061003. [DOI] [PubMed] [Google Scholar]
  12. Delcourt S. G., Blake R. D. Stacking energies in DNA. J Biol Chem. 1991 Aug 15;266(23):15160–15169. [PubMed] [Google Scholar]
  13. DiGabriele A. D., Sanderson M. R., Steitz T. A. Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1816–1820. doi: 10.1073/pnas.86.6.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dickerson R. E. DNA structure from A to Z. Methods Enzymol. 1992;211:67–111. doi: 10.1016/0076-6879(92)11007-6. [DOI] [PubMed] [Google Scholar]
  15. Diekmann S., Wang J. C. On the sequence determinants and flexibility of the kinetoplast DNA fragment with abnormal gel electrophoretic mobilities. J Mol Biol. 1985 Nov 5;186(1):1–11. doi: 10.1016/0022-2836(85)90251-7. [DOI] [PubMed] [Google Scholar]
  16. Dill K. A. Additivity principles in biochemistry. J Biol Chem. 1997 Jan 10;272(2):701–704. doi: 10.1074/jbc.272.2.701. [DOI] [PubMed] [Google Scholar]
  17. Doktycz M. J., Goldstein R. F., Paner T. M., Gallo F. J., Benight A. S. Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: evaluation of the nearest-neighbor stacking interactions in DNA. Biopolymers. 1992 Jul;32(7):849–864. doi: 10.1002/bip.360320712. [DOI] [PubMed] [Google Scholar]
  18. Filimonov V. V., Privalov P. L. Thermodynamics of base interaction in (A)n and (A.U)n. J Mol Biol. 1978 Jul 15;122(4):465–470. doi: 10.1016/0022-2836(78)90422-9. [DOI] [PubMed] [Google Scholar]
  19. Friedman R. A., Honig B. A free energy analysis of nucleic acid base stacking in aqueous solution. Biophys J. 1995 Oct;69(4):1528–1535. doi: 10.1016/S0006-3495(95)80023-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gotoh O. Prediction of melting profiles and local helix stability for sequenced DNA. Adv Biophys. 1983;16:1–52. doi: 10.1016/0065-227x(83)90007-2. [DOI] [PubMed] [Google Scholar]
  21. Hagerman P. J. Sequence-directed curvature of DNA. Nature. 1986 May 22;321(6068):449–450. doi: 10.1038/321449a0. [DOI] [PubMed] [Google Scholar]
  22. Klump H., Ackermann T. Experimental thermodynamics of the helix--random coil transition. IV. Influence of the base composition of DNA on the transition enthalpy. Biopolymers. 1971;10(3):513–522. doi: 10.1002/bip.360100307. [DOI] [PubMed] [Google Scholar]
  23. Krakauer H., Sturtevant J. M. Heats of the helix-coil transitions of the poly A-poly U complexes. Biopolymers. 1968 Apr;6(4):491–512. doi: 10.1002/bip.1968.360060406. [DOI] [PubMed] [Google Scholar]
  24. MARMUR J., DOTY P. Heterogeneity in deoxyribonucleic acids. I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature. 1959 May 23;183(4673):1427–1429. doi: 10.1038/1831427a0. [DOI] [PubMed] [Google Scholar]
  25. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  26. Nelson H. C., Finch J. T., Luisi B. F., Klug A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature. 1987 Nov 19;330(6145):221–226. doi: 10.1038/330221a0. [DOI] [PubMed] [Google Scholar]
  27. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  28. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  29. SantaLucia J., Jr, Allawi H. T., Seneviratne P. A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry. 1996 Mar 19;35(11):3555–3562. doi: 10.1021/bi951907q. [DOI] [PubMed] [Google Scholar]
  30. Shiao D. D., Sturtevant J. M. Heats of thermally induced helix-coil transitions of DNA in aqueous solution. Biopolymers. 1973;12(8):1829–1836. doi: 10.1002/bip.1973.360120810. [DOI] [PubMed] [Google Scholar]
  31. Sugimoto N., Nakano S., Yoneyama M., Honda K. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 1996 Nov 15;24(22):4501–4505. doi: 10.1093/nar/24.22.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vizard D. L., White R. A., Ansevin A. T. Comparison of theory to experiment for DNA thermal denaturation. Nature. 1978 Sep 21;275(5677):250–251. doi: 10.1038/275250a0. [DOI] [PubMed] [Google Scholar]
  33. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]
  34. Yen W. S., Blake R. D. Analysis of high-resolution melting (thermal dispersion) of DNA. Methods. Biopolymers. 1980 Mar;19(3):681–700. doi: 10.1002/bip.1980.360190316. [DOI] [PubMed] [Google Scholar]
  35. Yoon C., Privé G. G., Goodsell D. S., Dickerson R. E. Structure of an alternating-B DNA helix and its relationship to A-tract DNA. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6332–6336. doi: 10.1073/pnas.85.17.6332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang H., Scholl R., Browse J., Somerville C. Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Res. 1988 Feb 11;16(3):1220–1220. doi: 10.1093/nar/16.3.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES