Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 15;26(14):3385–3391. doi: 10.1093/nar/26.14.3385

Effects of helical structures formed by the binding arms of DNAzymes and their substrates on catalytic activity.

N Ota 1, M Warashina 1, K Hirano 1, K Hatanaka 1, K Taira 1
PMCID: PMC147707  PMID: 9649623

Abstract

As a part of our efforts to clarify structure-function relationships in reactions catalyzed by deoxyribozymes (DNAzymes), which were recently selected in vitro , we synthesized various chimeras and analyzed the kinetics of the corresponding cleavage reactions. We focused on the binding arms and generated helices composed of binding arms and substrates that consisted of RNA and RNA, of RNA and DNA or of DNA and DNA. As expected for the rate limiting chemical cleavage step in reactions catalyzed by DNAzymes, a linear relationship between log( k cat) and pH was observed. In all cases examined, introduction of DNA into the binding helix enhanced the rate of chemical cleavage. Comparison of CD spectra of DNAzyme. substrate complexes suggested that higher levels of B-form-like helix were associated with higher rates of cleavage of the substrate within the complex. To our surprise, the enhancement of catalytic activity that followed introduction of DNA into the binding helix (enhancement by the presence of more B-form-like helix) was very similar to that observed in the case of the hammerhead ribozymes that we had investigated previously. These data, together with other observations, strongly suggest that the reaction mechanism of metal-ion-dependent DNAzymes is almost identical to that of hammerhead ribozymes.

Full Text

The Full Text of this article is available as a PDF (569.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. Ribonuclease P: an enzyme with a catalytic RNA subunit. Adv Enzymol Relat Areas Mol Biol. 1989;62:1–36. doi: 10.1002/9780470123089.ch1. [DOI] [PubMed] [Google Scholar]
  2. Beigelman L., Karpeisky A., Matulic-Adamic J., Haeberli P., Sweedler D., Usman N. Synthesis of 2'-modified nucleotides and their incorporation into hammerhead ribozymes. Nucleic Acids Res. 1995 Nov 11;23(21):4434–4442. doi: 10.1093/nar/23.21.4434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birikh K. R., Heaton P. A., Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997 Apr 1;245(1):1–16. doi: 10.1111/j.1432-1033.1997.t01-3-00001.x. [DOI] [PubMed] [Google Scholar]
  4. Bratty J., Chartrand P., Ferbeyre G., Cedergren R. The hammerhead RNA domain, a model ribozyme. Biochim Biophys Acta. 1993 Dec 14;1216(3):345–359. doi: 10.1016/0167-4781(93)90001-t. [DOI] [PubMed] [Google Scholar]
  5. Breaker R. R., Joyce G. F. A DNA enzyme that cleaves RNA. Chem Biol. 1994 Dec;1(4):223–229. doi: 10.1016/1074-5521(94)90014-0. [DOI] [PubMed] [Google Scholar]
  6. Breaker R. R., Joyce G. F. A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity. Chem Biol. 1995 Oct;2(10):655–660. doi: 10.1016/1074-5521(95)90028-4. [DOI] [PubMed] [Google Scholar]
  7. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carmi N., Shultz L. A., Breaker R. R. In vitro selection of self-cleaving DNAs. Chem Biol. 1996 Dec;3(12):1039–1046. doi: 10.1016/s1074-5521(96)90170-2. [DOI] [PubMed] [Google Scholar]
  9. Cech T. R., Zaug A. J., Grabowski P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec;27(3 Pt 2):487–496. doi: 10.1016/0092-8674(81)90390-1. [DOI] [PubMed] [Google Scholar]
  10. Cuenoud B., Szostak J. W. A DNA metalloenzyme with DNA ligase activity. Nature. 1995 Jun 15;375(6532):611–614. doi: 10.1038/375611a0. [DOI] [PubMed] [Google Scholar]
  11. Dahm S. C., Uhlenbeck O. C. Characterization of deoxy- and ribo-containing oligonucleotide substrates in the hammerhead self-cleavage reaction. Biochimie. 1990 Nov;72(11):819–823. doi: 10.1016/0300-9084(90)90191-i. [DOI] [PubMed] [Google Scholar]
  12. Fairall L., Martin S., Rhodes D. The DNA binding site of the Xenopus transcription factor IIIA has a non-B-form structure. EMBO J. 1989 Jun;8(6):1809–1817. doi: 10.1002/j.1460-2075.1989.tb03575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fu D. J., McLaughlin L. W. Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3985–3989. doi: 10.1073/pnas.89.9.3985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  16. Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
  17. Hung S. H., Yu Q., Gray D. M., Ratliff R. L. Evidence from CD spectra that d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrids are in different structural classes. Nucleic Acids Res. 1994 Oct 11;22(20):4326–4334. doi: 10.1093/nar/22.20.4326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89–110. doi: 10.1002/bip.1973.360120109. [DOI] [PubMed] [Google Scholar]
  19. Koseki S., Ohkawa J., Yamamoto R., Takebe Y., Taira K. A simple assay system for examination of the inhibitory potential in vivo of decoy RNAs, ribozymes and other drugs by measuring the Tat-mediated transcription of a fusion gene composed of the long terminal repeat of HIV-1 and a gene for luciferase. J Control Release. 1998 Apr 30;53(1-3):159–173. doi: 10.1016/s0168-3659(97)00250-2. [DOI] [PubMed] [Google Scholar]
  20. Kuwabara T., Amontov S. V., Warashina M., Ohkawa J., Taira K. Characterization of several kinds of dimer minizyme: simultaneous cleavage at two sites in HIV-1 tat mRNA by dimer minizymes. Nucleic Acids Res. 1996 Jun 15;24(12):2302–2310. doi: 10.1093/nar/24.12.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuwabara T., Warashina M., Tanabe T., Tani K., Asano S., Taira K. Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA. Nucleic Acids Res. 1997 Aug 1;25(15):3074–3081. doi: 10.1093/nar/25.15.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lesnik E. A., Freier S. M. Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry. 1995 Aug 29;34(34):10807–10815. doi: 10.1021/bi00034a013. [DOI] [PubMed] [Google Scholar]
  23. Li Y., Sen D. A catalytic DNA for porphyrin metallation. Nat Struct Biol. 1996 Sep;3(9):743–747. doi: 10.1038/nsb0996-743. [DOI] [PubMed] [Google Scholar]
  24. McCall M. J., Hendry P., Jennings P. A. Minimal sequence requirements for ribozyme activity. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5710–5714. doi: 10.1073/pnas.89.13.5710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore D. S., Wagner T. E. Double-helical DNA and RNA circular dichroism. Calculations on base-sugar-phosphateehlix interactions. Biopolymers. 1974 May;13(5):977–986. doi: 10.1002/bip.1974.360130512. [DOI] [PubMed] [Google Scholar]
  26. Ohkawa J., Yuyama N., Takebe Y., Nishikawa S., Taira K. Importance of independence in ribozyme reactions: kinetic behavior of trimmed and of simply connected multiple ribozymes with potential activity against human immunodeficiency virus. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11302–11306. doi: 10.1073/pnas.90.23.11302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orita M., Vinayak R., Andrus A., Warashina M., Chiba A., Kaniwa H., Nishikawa F., Nishikawa S., Taira K. Magnesium-mediated conversion of an inactive form of a hammerhead ribozyme to an active complex with its substrate. An investigation by NMR spectroscopy. J Biol Chem. 1996 Apr 19;271(16):9447–9454. doi: 10.1074/jbc.271.16.9447. [DOI] [PubMed] [Google Scholar]
  28. Perreault J. P., Wu T. F., Cousineau B., Ogilvie K. K., Cedergren R. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. 1990 Apr 5;344(6266):565–567. doi: 10.1038/344565a0. [DOI] [PubMed] [Google Scholar]
  29. Pieken W. A., Olsen D. B., Benseler F., Aurup H., Eckstein F. Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes. Science. 1991 Jul 19;253(5017):314–317. doi: 10.1126/science.1857967. [DOI] [PubMed] [Google Scholar]
  30. Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sawata S., Shimayama T., Komiyama M., Kumar P. K., Nishikawa S., Taira K. Enhancement of the cleavage rates of DNA-armed hammerhead ribozymes by various divalent metal ions. Nucleic Acids Res. 1993 Dec 11;21(24):5656–5660. doi: 10.1093/nar/21.24.5656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shimayama T., Nishikawa F., Nishikawa S., Taira K. Nuclease-resistant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucleic Acids Res. 1993 Jun 11;21(11):2605–2611. doi: 10.1093/nar/21.11.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shimayama T., Sawata S., Komiyama M., Takagi Y., Tanaka Y., Wada A., Sugimoto N., Rossi J. J., Nishikawa F., Nishikawa S. Substitution of non-catalytic stem and loop regions of hammerhead ribozyme with DNA counterparts only increases KM without sacrificing the catalytic step (kcat): a way to improve substrate-specificity. Nucleic Acids Symp Ser. 1992;(27):17–18. [PubMed] [Google Scholar]
  34. Sugimoto N., Katoh M., Nakano S., Ohmichi T., Sasaki M. RNA/DNA hybrid duplexes with identical nearest-neighbor base-pairs have identical stability. FEBS Lett. 1994 Oct 31;354(1):74–78. doi: 10.1016/0014-5793(94)01098-6. [DOI] [PubMed] [Google Scholar]
  35. Sugimoto N., Nakano S., Katoh M., Matsumura A., Nakamuta H., Ohmichi T., Yoneyama M., Sasaki M. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry. 1995 Sep 5;34(35):11211–11216. doi: 10.1021/bi00035a029. [DOI] [PubMed] [Google Scholar]
  36. Symons R. H. Small catalytic RNAs. Annu Rev Biochem. 1992;61:641–671. doi: 10.1146/annurev.bi.61.070192.003233. [DOI] [PubMed] [Google Scholar]
  37. Takagi Y., Taira K. Temperature-dependent change in the rate-determining step in a reaction catalyzed by a hammerhead ribozyme. FEBS Lett. 1995 Mar 20;361(2-3):273–276. doi: 10.1016/0014-5793(95)00192-c. [DOI] [PubMed] [Google Scholar]
  38. Taylor N. R., Kaplan B. E., Swiderski P., Li H., Rossi J. J. Chimeric DNA-RNA hammerhead ribozymes have enhanced in vitro catalytic efficiency and increased stability in vivo. Nucleic Acids Res. 1992 Sep 11;20(17):4559–4565. doi: 10.1093/nar/20.17.4559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  40. Young B., Herschlag D., Cech T. R. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell. 1991 Nov 29;67(5):1007–1019. doi: 10.1016/0092-8674(91)90373-7. [DOI] [PubMed] [Google Scholar]
  41. Zhou D. M., Zhang L. H., Taira K. Explanation by the double-metal-ion mechanism of catalysis for the differential metal ion effects on the cleavage rates of 5'-oxy and 5'-thio substrates by a hammerhead ribozyme. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14343–14348. doi: 10.1073/pnas.94.26.14343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhou De-Min, Taira Kazunari. The Hydrolysis of RNA: From Theoretical Calculations to the Hammerhead Ribozyme-Mediated Cleavage of RNA. Chem Rev. 1998 May 7;98(3):991–1026. doi: 10.1021/cr9604292. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES