Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 15;26(14):3449–3450. doi: 10.1093/nar/26.14.3449

Chemical mapping of co-existing RNA structures.

A R Schröder 1, T Baumstark 1, D Riesner 1
PMCID: PMC147709  PMID: 9649634

Abstract

In many cases RNA can assume co-existing or meta-stable structures preventing structure determination by chemical mapping. A novel method is described, by which RNA is modified with dimethyl sulphate without shifting the distribution of different structures. The different structures are then separated in native gel electrophoresis, and structure determination by primer extension can be carried out separately for each structure.

Full Text

The Full Text of this article is available as a PDF (78.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumstark T., Riesner D. Only one of four possible secondary structures of the central conserved region of potato spindle tuber viroid is a substrate for processing in a potato nuclear extract. Nucleic Acids Res. 1995 Nov 11;23(21):4246–4254. doi: 10.1093/nar/23.21.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumstark T., Schröder A. R., Riesner D. Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. EMBO J. 1997 Feb 3;16(3):599–610. doi: 10.1093/emboj/16.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eperon L. P., Graham I. R., Griffiths A. D., Eperon I. C. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell. 1988 Jul 29;54(3):393–401. doi: 10.1016/0092-8674(88)90202-4. [DOI] [PubMed] [Google Scholar]
  5. Gultyaev A. P., van Batenburg F. H., Pleij C. W. The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol. 1995 Jun 30;250(1):37–51. doi: 10.1006/jmbi.1995.0356. [DOI] [PubMed] [Google Scholar]
  6. Kolchanov N. A., Titov I. I., Vlassova I. E., Vlassov V. V. Chemical and computer probing of RNA structure. Prog Nucleic Acid Res Mol Biol. 1996;53:131–196. doi: 10.1016/S0079-6603(08)60144-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krupp G. RNA synthesis: strategies for the use of bacteriophage RNA polymerases. Gene. 1988 Dec 10;72(1-2):75–89. doi: 10.1016/0378-1119(88)90129-1. [DOI] [PubMed] [Google Scholar]
  8. Polisky B., Zhang X. Y., Fitzwater T. Mutations affecting primer RNA interaction with the replication repressor RNA I in plasmid CoIE1: potential RNA folding pathway mutants. EMBO J. 1990 Jan;9(1):295–304. doi: 10.1002/j.1460-2075.1990.tb08108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Qu F., Heinrich C., Loss P., Steger G., Tien P., Riesner D. Multiple pathways of reversion in viroids for conservation of structural elements. EMBO J. 1993 May;12(5):2129–2139. doi: 10.1002/j.1460-2075.1993.tb05861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rosenbaum V., Riesner D. Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem. 1987 May 9;26(2-3):235–246. doi: 10.1016/0301-4622(87)80026-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES