Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 1;26(15):3460–3467. doi: 10.1093/nar/26.15.3460

TRIP: a novel double stranded RNA binding protein which interacts with the leucine rich repeat of flightless I.

S A Wilson 1, E C Brown 1, A J Kingsman 1, S M Kingsman 1
PMCID: PMC147727  PMID: 9671805

Abstract

A northwestern screen of a CHO-K1 cell line cDNA library with radiolabelled HIV-1 TAR RNA identified a novel TAR RNA interacting protein, TRIP. The human trip cDNA was also cloned and its expression is induced by phorbol esters. The N-terminus of TRIP shows high homology to the coiled coil domain of FLAP, a protein which binds the leucine-rich repeat (LRR) of Flightless I (FLI) and the interaction of TRIP with the FLI LRR has been confirmed in vitro . TRIP does not bind single stranded DNA or RNA significantly and binds double stranded DNA weakly. In contrast, TRIP binds double stranded RNA with high affinity and two molecules of TRIP bind the TAR stem. The RNA binding domain has been identified and encompasses a lysine-rich motif. A TRIP-GFP fusion is localised in the cytoplasm and excluded from the nucleus. FLI has a C-terminal gelsolin-like domain which binds actin and therefore the association of TRIP with the FLI LRR may provide a link between the actin cytoskeleton and RNA in mammalian cells.

Full Text

The Full Text of this article is available as a PDF (390.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B., Muckenthaler M., Vives E., Blanchard A., Braddock M., Nacken W., Kingsman A. J., Kingsman S. M. Identification of a novel HIV-1 TAR RNA bulge binding protein. Nucleic Acids Res. 1994 Aug 25;22(16):3365–3372. doi: 10.1093/nar/22.16.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassell G., Singer R. H. mRNA and cytoskeletal filaments. Curr Opin Cell Biol. 1997 Feb;9(1):109–115. doi: 10.1016/s0955-0674(97)80159-7. [DOI] [PubMed] [Google Scholar]
  3. Benkirane M., Neuveut C., Chun R. F., Smith S. M., Samuel C. E., Gatignol A., Jeang K. T. Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J. 1997 Feb 3;16(3):611–624. doi: 10.1093/emboj/16.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braddock M., Thorburn A. M., Chambers A., Elliott G. D., Anderson G. J., Kingsman A. J., Kingsman S. M. A nuclear translational block imposed by the HIV-1 U3 region is relieved by the Tat-TAR interaction. Cell. 1990 Sep 21;62(6):1123–1133. doi: 10.1016/0092-8674(90)90389-v. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Buchanan S. G., Gay N. J. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol. 1996;65(1-2):1–44. doi: 10.1016/s0079-6107(96)00003-x. [DOI] [PubMed] [Google Scholar]
  7. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  8. Calnan B. J., Biancalana S., Hudson D., Frankel A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991 Feb;5(2):201–210. doi: 10.1101/gad.5.2.201. [DOI] [PubMed] [Google Scholar]
  9. Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. doi: 10.1126/science.252.5009.1167. [DOI] [PubMed] [Google Scholar]
  10. Campbell H. D., Schimansky T., Claudianos C., Ozsarac N., Kasprzak A. B., Cotsell J. N., Young I. G., de Couet H. G., Miklos G. L. The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11386–11390. doi: 10.1073/pnas.90.23.11386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carrier F., Gatignol A., Hollander M. C., Jeang K. T., Fornace A. J., Jr Induction of RNA-binding proteins in mammalian cells by DNA-damaging agents. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1554–1558. doi: 10.1073/pnas.91.4.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chang Y. N., Kenan D. J., Keene J. D., Gatignol A., Jeang K. T. Direct interactions between autoantigen La and human immunodeficiency virus leader RNA. J Virol. 1994 Nov;68(11):7008–7020. doi: 10.1128/jvi.68.11.7008-7020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chicurel M. E., Singer R. H., Meyer C. J., Ingber D. E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature. 1998 Apr 16;392(6677):730–733. doi: 10.1038/33719. [DOI] [PubMed] [Google Scholar]
  14. Claudianos C., Campbell H. D. The novel flightless-I gene brings together two gene families, actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction. Mol Biol Evol. 1995 May;12(3):405–414. doi: 10.1093/oxfordjournals.molbev.a040215. [DOI] [PubMed] [Google Scholar]
  15. Cunningham C. C., Stossel T. P., Kwiatkowski D. J. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science. 1991 Mar 8;251(4998):1233–1236. doi: 10.1126/science.1848726. [DOI] [PubMed] [Google Scholar]
  16. Gatignol A., Buckler-White A., Berkhout B., Jeang K. T. Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science. 1991 Mar 29;251(5001):1597–1600. doi: 10.1126/science.2011739. [DOI] [PubMed] [Google Scholar]
  17. Gatignol A., Buckler C., Jeang K. T. Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila staufen. Mol Cell Biol. 1993 Apr;13(4):2193–2202. doi: 10.1128/mcb.13.4.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iozzo R. V. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol. 1997;32(2):141–174. doi: 10.3109/10409239709108551. [DOI] [PubMed] [Google Scholar]
  19. Johnson A. C., Kageyama R., Popescu N. C., Pastan I. Expression and chromosomal localization of the gene for the human transcriptional repressor GCF. J Biol Chem. 1992 Jan 25;267(3):1689–1694. [PubMed] [Google Scholar]
  20. Kageyama R., Pastan I. Molecular cloning and characterization of a human DNA binding factor that represses transcription. Cell. 1989 Dec 1;59(5):815–825. doi: 10.1016/0092-8674(89)90605-3. [DOI] [PubMed] [Google Scholar]
  21. Kobe B., Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995 Mar 9;374(6518):183–186. doi: 10.1038/374183a0. [DOI] [PubMed] [Google Scholar]
  22. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liu Y. T., Yin H. L. Identification of the binding partners for flightless I, A novel protein bridging the leucine-rich repeat and the gelsolin superfamilies. J Biol Chem. 1998 Apr 3;273(14):7920–7927. doi: 10.1074/jbc.273.14.7920. [DOI] [PubMed] [Google Scholar]
  24. Long R. M., Singer R. H., Meng X., Gonzalez I., Nasmyth K., Jansen R. P. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science. 1997 Jul 18;277(5324):383–387. doi: 10.1126/science.277.5324.383. [DOI] [PubMed] [Google Scholar]
  25. Lupas A. Predicting coiled-coil regions in proteins. Curr Opin Struct Biol. 1997 Jun;7(3):388–393. doi: 10.1016/s0959-440x(97)80056-5. [DOI] [PubMed] [Google Scholar]
  26. Miklos G. L., De Couet H. G. The mutations previously designated as flightless-I3, flightless-O2 and standby are members of the W-2 lethal complementation group at the base of the X-chromosome of Drosophila melanogaster. J Neurogenet. 1990 Apr;6(3):133–151. doi: 10.3109/01677069009107106. [DOI] [PubMed] [Google Scholar]
  27. Reddy T. R., Suhasini M., Rappaport J., Looney D. J., Kraus G., Wong-Staal F. Molecular cloning and characterization of a TAR-binding nuclear factor from T cells. AIDS Res Hum Retroviruses. 1995 Jun;11(6):663–669. doi: 10.1089/aid.1995.11.663. [DOI] [PubMed] [Google Scholar]
  28. Rounseville M. P., Kumar A. Binding of a host cell nuclear protein to the stem region of human immunodeficiency virus type 1 trans-activation-responsive RNA. J Virol. 1992 Mar;66(3):1688–1694. doi: 10.1128/jvi.66.3.1688-1694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seeman N. C., Rosenberg J. M., Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci U S A. 1976 Mar;73(3):804–808. doi: 10.1073/pnas.73.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sheline C. T., Milocco L. H., Jones K. A. Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev. 1991 Dec;5(12B):2508–2520. doi: 10.1101/gad.5.12b.2508. [DOI] [PubMed] [Google Scholar]
  31. Straub K. L., Stella M. C., Leptin M. The gelsolin-related flightless I protein is required for actin distribution during cellularisation in Drosophila. J Cell Sci. 1996 Jan;109(Pt 1):263–270. doi: 10.1242/jcs.109.1.263. [DOI] [PubMed] [Google Scholar]
  32. Sun H. Q., Kwiatkowska K., Wooten D. C., Yin H. L. Effects of CapG overexpression on agonist-induced motility and second messenger generation. J Cell Biol. 1995 Apr;129(1):147–156. doi: 10.1083/jcb.129.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Svitkin Y. V., Ovchinnikov L. P., Dreyfuss G., Sonenberg N. General RNA binding proteins render translation cap dependent. EMBO J. 1996 Dec 16;15(24):7147–7155. [PMC free article] [PubMed] [Google Scholar]
  34. Takizawa P. A., Sil A., Swedlow J. R., Herskowitz I., Vale R. D. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature. 1997 Sep 4;389(6646):90–93. doi: 10.1038/38015. [DOI] [PubMed] [Google Scholar]
  35. Taneja K. L., Lifshitz L. M., Fay F. S., Singer R. H. Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy. J Cell Biol. 1992 Dec;119(5):1245–1260. doi: 10.1083/jcb.119.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tao J., Chen L., Frankel A. D. Dissection of the proposed base triple in human immunodeficiency virus TAR RNA indicates the importance of the Hoogsteen interaction. Biochemistry. 1997 Mar 25;36(12):3491–3495. doi: 10.1021/bi962259t. [DOI] [PubMed] [Google Scholar]
  37. Valerie K., Delers A., Bruck C., Thiriart C., Rosenberg H., Debouck C., Rosenberg M. Activation of human immunodeficiency virus type 1 by DNA damage in human cells. Nature. 1988 May 5;333(6168):78–81. doi: 10.1038/333078a0. [DOI] [PubMed] [Google Scholar]
  38. Valerie K., Singhal A., Kirkham J. C., Laster W. S., Rosenberg M. Activation of human immunodeficiency virus gene expression by ultraviolet light in stably transfected human cells does not require the enhancer element. Biochemistry. 1995 Dec 5;34(48):15760–15767. doi: 10.1021/bi00048a021. [DOI] [PubMed] [Google Scholar]
  39. Zamore P. D., Lehmann R. Drosophila development: homeodomains and translational control. Curr Biol. 1996 Jul 1;6(7):773–775. doi: 10.1016/s0960-9822(02)00591-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES