Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 1;26(15):3536–3541. doi: 10.1093/nar/26.15.3536

Specificity and fidelity of strand joining by Chlorella virus DNA ligase.

V Sriskanda 1, S Shuman 1
PMCID: PMC147728  PMID: 9671815

Abstract

Chlorella virus PBCV-1 DNA ligase seals nicked duplex DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging template strand, but cannot ligate a nicked duplex composed of two DNAs annealed on an RNA template. Whereas PBCV-1 ligase efficiently joins a 3'-OH RNA to a 5'-phosphate DNA, it is unable to join a 3'-OH DNA to a 5'-phosphate RNA. The ligase discriminates at the substrate binding step between nicked duplexes containing 5'-phosphate DNA versus 5'-phosphate RNA strands. PBCV-1 ligase readily seals a nicked duplex DNA containing a single ribonucleotide substitution at the reactive 5'-phosphate end. These results suggest a requirement for a B-form helical conformation of the polynucleotide on the 5'-phosphate side of the nick. Single base mismatches at the nick exert disparate effects on DNA ligation efficiency. PBCV-1 ligase tolerates mismatches involving the 5'-phosphate nucleotide, with the exception of 5'-A:G and 5'-G:A mispairs, which reduce ligase activity by two orders of magnitude. Inhibitory configurations at the 3'-OH nucleotide include 3'-G:A, 3'-G:T, 3'-T:T, 3'-A:G, 3'-G:G, 3'-A:C and 3'-C:C. Our findings indicate that Chlorella virus DNA ligase has the potential to affect genome integrity by embedding ribonucleotides in viral DNA and by sealing nicked molecules with mispaired ends, thereby generating missense mutations.

Full Text

The Full Text of this article is available as a PDF (246.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Chandrasekaran R., Millane R. P., Park H. S. DNA-RNA hybrid secondary structures. J Mol Biol. 1986 Apr 20;188(4):631–640. doi: 10.1016/s0022-2836(86)80011-0. [DOI] [PubMed] [Google Scholar]
  2. Bedows E., Wachsman J. T., Gumport R. I. L cell DNA ligase joins RNA to DNA on a DNA template. Biochemistry. 1977 May 17;16(10):2231–2235. doi: 10.1021/bi00629a029. [DOI] [PubMed] [Google Scholar]
  3. Ho C. K., Van Etten J. L., Shuman S. Characterization of an ATP-dependent DNA ligase encoded by Chlorella virus PBCV-1. J Virol. 1997 Mar;71(3):1931–1937. doi: 10.1128/jvi.71.3.1931-1937.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Husain I., Tomkinson A. E., Burkhart W. A., Moyer M. B., Ramos W., Mackey Z. B., Besterman J. M., Chen J. Purification and characterization of DNA ligase III from bovine testes. Homology with DNA ligase II and vaccinia DNA ligase. J Biol Chem. 1995 Apr 21;270(16):9683–9690. doi: 10.1074/jbc.270.16.9683. [DOI] [PubMed] [Google Scholar]
  5. Kodama K., Barnes D. E., Lindahl T. In vitro mutagenesis and functional expression in Escherichia coli of a cDNA encoding the catalytic domain of human DNA ligase I. Nucleic Acids Res. 1991 Nov 25;19(22):6093–6099. doi: 10.1093/nar/19.22.6093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kutish G. F., Li Y., Lu Z., Furuta M., Rock D. L., Van Etten J. L. Analysis of 76 kb of the chlorella virus PBCV-1 330-kb genome: map positions 182 to 258. Virology. 1996 Sep 15;223(2):303–317. doi: 10.1006/viro.1996.0482. [DOI] [PubMed] [Google Scholar]
  7. Lehman I. R. DNA ligase: structure, mechanism, and function. Science. 1974 Nov 29;186(4166):790–797. doi: 10.1126/science.186.4166.790. [DOI] [PubMed] [Google Scholar]
  8. Li Y., Lu Z., Burbank D. E., Kutish G. F., Rock D. L., Van Etten J. L. Analysis of 43 kb of the Chlorella virus PBCV-1 330-kb genome: map positions 45 to 88. Virology. 1995 Sep 10;212(1):134–150. doi: 10.1006/viro.1995.1462. [DOI] [PubMed] [Google Scholar]
  9. Lu Z., Li Y., Zhang Y., Kutish G. F., Rock D. L., Van Etten J. L. Analysis of 45 kb of DNA located at the left end of the chlorella virus PBCV-1 genome. Virology. 1995 Jan 10;206(1):339–352. doi: 10.1016/s0042-6822(95)80049-2. [DOI] [PubMed] [Google Scholar]
  10. Luo J., Barany F. Identification of essential residues in Thermus thermophilus DNA ligase. Nucleic Acids Res. 1996 Aug 1;24(15):3079–3085. doi: 10.1093/nar/24.15.3079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nath K., Hurwitz J. Covalent attachment of polyribonucleotides to polydeoxyribonucleotides catalyzed by deoxyribonucleic acid ligase. J Biol Chem. 1974 Jun 25;249(12):3680–3688. [PubMed] [Google Scholar]
  12. Rumbaugh J. A., Murante R. S., Shi S., Bambara R. A. Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing. J Biol Chem. 1997 Sep 5;272(36):22591–22599. doi: 10.1074/jbc.272.36.22591. [DOI] [PubMed] [Google Scholar]
  13. Salazar M., Fedoroff O. Y., Miller J. M., Ribeiro N. S., Reid B. R. The DNA strand in DNA.RNA hybrid duplexes is neither B-form nor A-form in solution. Biochemistry. 1993 Apr 27;32(16):4207–4215. doi: 10.1021/bi00067a007. [DOI] [PubMed] [Google Scholar]
  14. Sekiguchi J., Shuman S. Ligation of RNA-containing duplexes by vaccinia DNA ligase. Biochemistry. 1997 Jul 22;36(29):9073–9079. doi: 10.1021/bi970705m. [DOI] [PubMed] [Google Scholar]
  15. Sekiguchi J., Shuman S. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol Cell. 1997 Dec;1(1):89–97. doi: 10.1016/s1097-2765(00)80010-6. [DOI] [PubMed] [Google Scholar]
  16. Shuman S., Ru X. M. Mutational analysis of vaccinia DNA ligase defines residues essential for covalent catalysis. Virology. 1995 Aug 1;211(1):73–83. doi: 10.1006/viro.1995.1380. [DOI] [PubMed] [Google Scholar]
  17. Shuman S., Schwer B. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol Microbiol. 1995 Aug;17(3):405–410. doi: 10.1111/j.1365-2958.1995.mmi_17030405.x. [DOI] [PubMed] [Google Scholar]
  18. Shuman S. Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry. 1995 Dec 12;34(49):16138–16147. doi: 10.1021/bi00049a029. [DOI] [PubMed] [Google Scholar]
  19. Sriskanda V., Shuman S. Chlorella virus DNA ligase: nick recognition and mutational analysis. Nucleic Acids Res. 1998 Jan 15;26(2):525–531. doi: 10.1093/nar/26.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Subramanya H. S., Doherty A. J., Ashford S. R., Wigley D. B. Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell. 1996 May 17;85(4):607–615. doi: 10.1016/s0092-8674(00)81260-x. [DOI] [PubMed] [Google Scholar]
  21. Tomkinson A. E., Levin D. S. Mammalian DNA ligases. Bioessays. 1997 Oct;19(10):893–901. doi: 10.1002/bies.950191009. [DOI] [PubMed] [Google Scholar]
  22. Tomkinson A. E., Tappe N. J., Friedberg E. C. DNA ligase I from Saccharomyces cerevisiae: physical and biochemical characterization of the CDC9 gene product. Biochemistry. 1992 Dec 1;31(47):11762–11771. doi: 10.1021/bi00162a013. [DOI] [PubMed] [Google Scholar]
  23. Tomkinson A. E., Totty N. F., Ginsburg M., Lindahl T. Location of the active site for enzyme-adenylate formation in DNA ligases. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):400–404. doi: 10.1073/pnas.88.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES