Abstract
The DNA cytosine-C5 methyltransferase M. Hha I flips its target base out of the DNA helix during interaction with the substrate sequence GCGC. Binary and ternary complexes between M. Hha I and hemimethylated DNA duplexes were used to examine the suitability of four chemical methods to detect flipped-out bases in protein-DNA complexes. These methods probe the structural peculiarities of pyrimidine bases in DNA. We find that in cases when the target cytosine is replaced with thymine (GTGC), KMnO4proved an efficient probe for positive display of flipped-out thymines. The generality of this procedure was further verified by examining a DNA adenine-N6 methyltransferase, M. Taq I, in which case an enhanced reactivity of thymine replacing the target adenine (TCGT) in the recognition sequence TCGA was also observed. Our results support the proposed base-flipping mechanism for adenine methyltransferases, and offer a convenient laboratory tool for detection of flipped-out thymines in protein-DNA complexes.
Full Text
The Full Text of this article is available as a PDF (341.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan B. W., Beechem J. M., Lindstrom W. M., Reich N. O. Direct real time observation of base flipping by the EcoRI DNA methyltransferase. J Biol Chem. 1998 Jan 23;273(4):2368–2373. doi: 10.1074/jbc.273.4.2368. [DOI] [PubMed] [Google Scholar]
- Allan B. W., Reich N. O. Targeted base stacking disruption by the EcoRI DNA methyltransferase. Biochemistry. 1996 Nov 26;35(47):14757–14762. doi: 10.1021/bi9615708. [DOI] [PubMed] [Google Scholar]
- Bergerat A., Guschlbauer W. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli. Nucleic Acids Res. 1990 Aug 11;18(15):4369–4375. doi: 10.1093/nar/18.15.4369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boulard Y., Cognet J. A., Fazakerley G. V. Solution structure as a function of pH of two central mismatches, C . T and C . C, in the 29 to 39 K-ras gene sequence, by nuclear magnetic resonance and molecular dynamics. J Mol Biol. 1997 May 2;268(2):331–347. doi: 10.1006/jmbi.1997.0975. [DOI] [PubMed] [Google Scholar]
- Cal S., Connolly B. A. DNA distortion and base flipping by the EcoRV DNA methyltransferase. A study using interference at dA and T bases and modified deoxynucleosides. J Biol Chem. 1997 Jan 3;272(1):490–496. doi: 10.1074/jbc.272.1.490. [DOI] [PubMed] [Google Scholar]
- Cal S., Connolly B. A. The EcoRV modification methylase causes considerable bending of DNA upon binding to its recognition sequence GATATC. J Biol Chem. 1996 Jan 12;271(2):1008–1015. doi: 10.1074/jbc.271.2.1008. [DOI] [PubMed] [Google Scholar]
- Cotton R. G., Rodrigues N. R., Campbell R. D. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4397–4401. doi: 10.1073/pnas.85.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finta C., Kiss A. Footprint analysis of the bsp RI DNA methyltransferase-DNA interaction. Nucleic Acids Res. 1997 Jul 15;25(14):2841–2846. doi: 10.1093/nar/25.14.2841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabbara S., Sheluho D., Bhagwat A. S. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry. 1995 Jul 11;34(27):8914–8923. doi: 10.1021/bi00027a044. [DOI] [PubMed] [Google Scholar]
- Garcia R. A., Bustamante C. J., Reich N. O. Sequence-specific recognition of cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7618–7622. doi: 10.1073/pnas.93.15.7618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giardina C., Lis J. T. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol Cell Biol. 1995 May;15(5):2737–2744. doi: 10.1128/mcb.15.5.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gogos J. A., Karayiorgou M., Aburatani H., Kafatos F. C. Detection of single base mismatches of thymine and cytosine residues by potassium permanganate and hydroxylamine in the presence of tetralkylammonium salts. Nucleic Acids Res. 1990 Dec 11;18(23):6807–6814. doi: 10.1093/nar/18.23.6807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong W., O'Gara M., Blumenthal R. M., Cheng X. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res. 1997 Jul 15;25(14):2702–2715. doi: 10.1093/nar/25.14.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holz B., Klimasauskas S., Serva S., Weinhold E. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 1998 Feb 15;26(4):1076–1083. doi: 10.1093/nar/26.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter W. N., Brown T., Kneale G., Anand N. N., Rabinovich D., Kennard O. The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution. J Biol Chem. 1987 Jul 25;262(21):9962–9970. doi: 10.2210/pdb113d/pdb. [DOI] [PubMed] [Google Scholar]
- Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
- Klimasauskas S., Roberts R. J. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995 Apr 25;23(8):1388–1395. doi: 10.1093/nar/23.8.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klimasauskas S., Szyperski T., Serva S., Wüthrich K. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution. EMBO J. 1998 Jan 2;17(1):317–324. doi: 10.1093/emboj/17.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konieczny I., Doran K. S., Helinski D. R., Blasina A. Role of TrfA and DnaA proteins in origin opening during initiation of DNA replication of the broad host range plasmid RK2. J Biol Chem. 1997 Aug 8;272(32):20173–20178. doi: 10.1074/jbc.272.32.20173. [DOI] [PubMed] [Google Scholar]
- Kossykh V. G., Schlagman S. L., Hattman S. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII [cytosine-C5]-DNA methyltransferase. FEBS Lett. 1995 Aug 14;370(1-2):75–77. doi: 10.1016/0014-5793(95)00795-b. [DOI] [PubMed] [Google Scholar]
- Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R. J., Wilson G. G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994 Jan 11;22(1):1–10. doi: 10.1093/nar/22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar S., Cheng X., Pflugrath J. W., Roberts R. J. Purification, crystallization, and preliminary X-ray diffraction analysis of an M.HhaI-AdoMet complex. Biochemistry. 1992 Sep 15;31(36):8648–8653. doi: 10.1021/bi00151a035. [DOI] [PubMed] [Google Scholar]
- Labahn J., Granzin J., Schluckebier G., Robinson D. P., Jack W. E., Schildkraut I., Saenger W. Three-dimensional structure of the adenine-specific DNA methyltransferase M.Taq I in complex with the cofactor S-adenosylmethionine. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10957–10961. doi: 10.1073/pnas.91.23.10957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- McClelland M. Purification and characterization of two new modification methylases: MClaI from Caryophanon latum L and MTaqI from Thermus aquaticus YTI. Nucleic Acids Res. 1981 Dec 21;9(24):6795–6804. doi: 10.1093/nar/9.24.6795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCullough A. K., Dodson M. L., Schärer O. D., Lloyd R. S. The role of base flipping in damage recognition and catalysis by T4 endonuclease V. J Biol Chem. 1997 Oct 24;272(43):27210–27217. doi: 10.1074/jbc.272.43.27210. [DOI] [PubMed] [Google Scholar]
- Mernagh D. R., Kneale G. G. High resolution footprinting of a type I methyltransferase reveals a large structural distortion within the DNA recognition site. Nucleic Acids Res. 1996 Dec 15;24(24):4853–4858. doi: 10.1093/nar/24.24.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mi S., Alonso D., Roberts R. J. Functional analysis of Gln-237 mutants of HhaI methyltransferase. Nucleic Acids Res. 1995 Feb 25;23(4):620–627. doi: 10.1093/nar/23.4.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitas M., Yu A., Dill J., Kamp T. J., Chambers E. J., Haworth I. S. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res. 1995 Mar 25;23(6):1050–1059. doi: 10.1093/nar/23.6.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moe J. G., Russu I. M. Kinetics and energetics of base-pair opening in 5'-d(CGCGAATTCGCG)-3' and a substituted dodecamer containing G.T mismatches. Biochemistry. 1992 Sep 15;31(36):8421–8428. doi: 10.1021/bi00151a005. [DOI] [PubMed] [Google Scholar]
- O'Gara M., Klimasauskas S., Roberts R. J., Cheng X. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes. J Mol Biol. 1996 Sep 6;261(5):634–645. doi: 10.1006/jmbi.1996.0489. [DOI] [PubMed] [Google Scholar]
- O'Gara M., Roberts R. J., Cheng X. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase. J Mol Biol. 1996 Nov 8;263(4):597–606. doi: 10.1006/jmbi.1996.0601. [DOI] [PubMed] [Google Scholar]
- Reinisch K. M., Chen L., Verdine G. L., Lipscomb W. N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 1995 Jul 14;82(1):143–153. doi: 10.1016/0092-8674(95)90060-8. [DOI] [PubMed] [Google Scholar]
- Renbaum P., Razin A. Footprint analysis of M.Sssl and M.Hhal methyltransferases reveals extensive interactions with the substrate DNA backbone. J Mol Biol. 1995 Apr 21;248(1):19–26. doi: 10.1006/jmbi.1995.0199. [DOI] [PubMed] [Google Scholar]
- Richterich P., Lakey N. D., Lee H. M., Mao J. I., Smith D., Church G. M. Cytosine specific DNA sequencing with hydrogen peroxide. Nucleic Acids Res. 1995 Dec 11;23(23):4922–4923. doi: 10.1093/nar/23.23.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts E., Deeble V. J., Woods C. G., Taylor G. R. Potassium permanganate and tetraethylammonium chloride are a safe and effective substitute for osmium tetroxide in solid-phase fluorescent chemical cleavage of mismatch. Nucleic Acids Res. 1997 Aug 15;25(16):3377–3378. doi: 10.1093/nar/25.16.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts R. J., Myers P. A., Morrison A., Murray K. A specific endonuclease from Haemophilus haemolyticus. J Mol Biol. 1976 May 5;103(1):199–208. doi: 10.1016/0022-2836(76)90060-7. [DOI] [PubMed] [Google Scholar]
- Roberts R. J. On base flipping. Cell. 1995 Jul 14;82(1):9–12. doi: 10.1016/0092-8674(95)90046-2. [DOI] [PubMed] [Google Scholar]
- Ross S. A., Burrows C. J. Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate. Nucleic Acids Res. 1996 Dec 15;24(24):5062–5063. doi: 10.1093/nar/24.24.5062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin C. M., Schmid C. W. Pyrimidine-specific chemical reactions useful for DNA sequencing. Nucleic Acids Res. 1980 Oct 24;8(20):4613–4619. doi: 10.1093/nar/8.20.4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasse-Dwight S., Gralla J. D. Footprinting protein-DNA complexes in vivo. Methods Enzymol. 1991;208:146–168. doi: 10.1016/0076-6879(91)08012-7. [DOI] [PubMed] [Google Scholar]
- Schluckebier G., Kozak M., Bleimling N., Weinhold E., Saenger W. Differential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI. J Mol Biol. 1997 Jan 10;265(1):56–67. doi: 10.1006/jmbi.1996.0711. [DOI] [PubMed] [Google Scholar]
- Schluckebier G., O'Gara M., Saenger W., Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol. 1995 Mar 17;247(1):16–20. doi: 10.1006/jmbi.1994.0117. [DOI] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Covalent DNA binding by vaccinia topoisomerase results in unpairing of the thymine base 5' of the scissile bond. J Biol Chem. 1996 Aug 9;271(32):19436–19442. doi: 10.1074/jbc.271.32.19436. [DOI] [PubMed] [Google Scholar]
- Vassylyev D. G., Morikawa K. DNA-repair enzymes. Curr Opin Struct Biol. 1997 Feb;7(1):103–109. doi: 10.1016/s0959-440x(97)80013-9. [DOI] [PubMed] [Google Scholar]
- Visse R., King A., Moolenaar G. F., Goosen N., van de Putte P. Protein-DNA interactions and alterations in the DNA structure upon UvrB-DNA preincision complex formation during nucleotide excision repair in Escherichia coli. Biochemistry. 1994 Aug 23;33(33):9881–9888. doi: 10.1021/bi00199a009. [DOI] [PubMed] [Google Scholar]
- Wang W., Carey M., Gralla J. D. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science. 1992 Jan 24;255(5043):450–453. doi: 10.1126/science.1310361. [DOI] [PubMed] [Google Scholar]
- Wu J. C., Santi D. V. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4778–4786. [PubMed] [Google Scholar]
- Yang A. S., Shen J. C., Zingg J. M., Mi S., Jones P. A. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 1995 Apr 25;23(8):1380–1387. doi: 10.1093/nar/23.8.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]