Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 1;26(15):3562–3566. doi: 10.1093/nar/26.15.3562

Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates.

C Kwok 1, R M Korn 1, M E Davis 1, D W Burt 1, R Critcher 1, L McCarthy 1, B H Paw 1, L I Zon 1, P N Goodfellow 1, K Schmitt 1
PMCID: PMC147736  PMID: 9671819

Abstract

Radiation hybrid panels are already available for genome mapping in human and mouse. In this study we have used two model organisms (chicken and zebrafish) to show that hybrid panels that contain a full complement of the donor genome can be generated by fusion to hamster cells. The quality of the resulting hybrids has been assessed using PCR and FISH. We confirmed the utility of our panels by establishing the percentage of donor DNA present in the hybrids. Our hybrid resources will allow inexpensive gene mapping and we expect that this technology can be transferred to many other species. Such successes are providing the basis for a new era of mapping tools, in the form of whole genome radiation hybrid panels, and are opening new possibilities for systematic genome analysis in the animal genetics community.

Full Text

The Full Text of this article is available as a PDF (97.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borenfreund E., Babich H., Martin-Alguacil N. Effect of methylazoxymethanol acetate on bluegill sunfish cell cultures in vitro. Ecotoxicol Environ Saf. 1989 Jun;17(3):297–307. doi: 10.1016/0147-6513(89)90050-x. [DOI] [PubMed] [Google Scholar]
  2. Burt D. W., Bumstead N., Bitgood J. J., Ponce de Leon F. A., Crittenden L. B. Chicken genome mapping: a new era in avian genetics. Trends Genet. 1995 May;11(5):190–194. doi: 10.1016/s0168-9525(00)89042-3. [DOI] [PubMed] [Google Scholar]
  3. Ekker M., Speevak M. D., Martin C. C., Joly L., Giroux G., Chevrette M. Stable transfer of zebrafish chromosome segments into mouse cells. Genomics. 1996 Apr 1;33(1):57–64. doi: 10.1006/geno.1996.0159. [DOI] [PubMed] [Google Scholar]
  4. Goff D. J., Galvin K., Katz H., Westerfield M., Lander E. S., Tabin C. J. Identification of polymorphic simple sequence repeats in the genome of the zebrafish. Genomics. 1992 Sep;14(1):200–202. doi: 10.1016/s0888-7543(05)80309-x. [DOI] [PubMed] [Google Scholar]
  5. Goss S. J., Harris H. New method for mapping genes in human chromosomes. Nature. 1975 Jun 26;255(5511):680–684. doi: 10.1038/255680a0. [DOI] [PubMed] [Google Scholar]
  6. Gyapay G., Schmitt K., Fizames C., Jones H., Vega-Czarny N., Spillett D., Muselet D., Prud'homme J. F., Dib C., Auffray C. A radiation hybrid map of the human genome. Hum Mol Genet. 1996 Mar;5(3):339–346. doi: 10.1093/hmg/5.3.339. [DOI] [PubMed] [Google Scholar]
  7. Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., Slonim D. K., Baptista R., Kruglyak L., Xu S. H. An STS-based map of the human genome. Science. 1995 Dec 22;270(5244):1945–1954. doi: 10.1126/science.270.5244.1945. [DOI] [PubMed] [Google Scholar]
  8. Kauffman E. J., Gestl E. E., Kim D. J., Walker C., Hite J. M., Yan G., Rogan P. K., Johnson S. L., Cheng K. C. Microsatellite-centromere mapping in the zebrafish (Danio rerio). Genomics. 1995 Nov 20;30(2):337–341. doi: 10.1006/geno.1995.9869. [DOI] [PubMed] [Google Scholar]
  9. Keydar J., Gilead Z., Hartman J. R., Ben-Shaul Y. In vitro production of mouse mammary tumor virus in a mouse mammary tumor ascites line. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2983–2987. doi: 10.1073/pnas.70.10.2983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knapik E. W., Goodman A., Atkinson O. S., Roberts C. T., Shiozawa M., Sim C. U., Weksler-Zangen S., Trolliet M. R., Futrell C., Innes B. A. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development. 1996 Dec;123:451–460. doi: 10.1242/dev.123.1.451. [DOI] [PubMed] [Google Scholar]
  11. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lange K., Boehnke M., Cox D. R., Lunetta K. L. Statistical methods for polyploid radiation hybrid mapping. Genome Res. 1995 Sep;5(2):136–150. doi: 10.1101/gr.5.2.136. [DOI] [PubMed] [Google Scholar]
  13. Leung W. C., Chen T. R., Dubbs D. R., Kit S. Identification of chick thymidine kinase determinant in somatic cell hybrids of chick erythrocytes and thymidine kinase-deficient mouse cells. Exp Cell Res. 1975 Oct 15;95(2):320–326. doi: 10.1016/0014-4827(75)90557-1. [DOI] [PubMed] [Google Scholar]
  14. Li Y. K., Ponce de Leon F. A. Partitioning of the chicken genome by microcell hybridization. Poult Sci. 1992 Jan;71(1):151–160. doi: 10.3382/ps.0710151. [DOI] [PubMed] [Google Scholar]
  15. Lichter P., Ledbetter S. A., Ledbetter D. H., Ward D. C. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6634–6638. doi: 10.1073/pnas.87.17.6634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lunetta K. L., Boehnke M. Multipoint radiation hybrid mapping: comparison of methods, sample size requirements, and optimal study characteristics. Genomics. 1994 May 1;21(1):92–103. doi: 10.1006/geno.1994.1229. [DOI] [PubMed] [Google Scholar]
  17. McQueen H. A., Fantes J., Cross S. H., Clark V. H., Archibald A. L., Bird A. P. CpG islands of chicken are concentrated on microchromosomes. Nat Genet. 1996 Mar;12(3):321–324. doi: 10.1038/ng0396-321. [DOI] [PubMed] [Google Scholar]
  18. Mullins M. C., Hammerschmidt M., Haffter P., Nüsslein-Volhard C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol. 1994 Mar 1;4(3):189–202. doi: 10.1016/s0960-9822(00)00048-8. [DOI] [PubMed] [Google Scholar]
  19. Postlethwait J. H., Johnson S. L., Midson C. N., Talbot W. S., Gates M., Ballinger E. W., Africa D., Andrews R., Carl T., Eisen J. S. A genetic linkage map for the zebrafish. Science. 1994 Apr 29;264(5159):699–703. doi: 10.1126/science.8171321. [DOI] [PubMed] [Google Scholar]
  20. Schmitt K., Foster J. W., Feakes R. W., Knights C., Davis M. E., Spillett D. J., Goodfellow P. N. Construction of a mouse whole-genome radiation hybrid panel and application to MMU11. Genomics. 1996 Jun 1;34(2):193–197. doi: 10.1006/geno.1996.0265. [DOI] [PubMed] [Google Scholar]
  21. Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
  22. Sidén T. S., Kumlien J., Schwartz C. E., Röhme D. Radiation fusion hybrids for human chromosomes 3 and X generated at various irradiation doses. Somat Cell Mol Genet. 1992 Jan;18(1):33–44. doi: 10.1007/BF01233447. [DOI] [PubMed] [Google Scholar]
  23. Walter M. A., Spillett D. J., Thomas P., Weissenbach J., Goodfellow P. N. A method for constructing radiation hybrid maps of whole genomes. Nat Genet. 1994 May;7(1):22–28. doi: 10.1038/ng0594-22. [DOI] [PubMed] [Google Scholar]
  24. Westerveld A., Visser R. P., Meera Khan P., Bootsma D. Loss of human genetic markers in man--Chinese hamster somatic cell hybrids. Nat New Biol. 1971 Nov 3;234(44):20–24. doi: 10.1038/newbio234020a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES