Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 1;26(15):3494–3504. doi: 10.1093/nar/26.15.3494

Intracellular RNA cleavage by the hairpin ribozyme.

A A Seyhan 1, J Amaral 1, J M Burke 1
PMCID: PMC147743  PMID: 9671810

Abstract

Studies involving ribozyme-directed inactivation of targeted RNA molecules have met with mixed success, making clear the importance of methods to measure and optimize ribozyme activity within cells. The interpretation of biochemical assays for determining ribozyme activity in the cellular environment have been complicated by recent results indicating that hammerhead and hairpin ribozymes can cleave RNA following cellular lysis. Here, we report the results of experiments in which the catalytic activity of hairpin ribozymes is monitored following expression in mammalian cells, and in which post-lysis cleavage is rigorously excluded through a series of biochemical and genetic controls. Following transient transfection, self-processing transcripts containing active and inactive hairpin ribozymes together with cleavable and non-cleavable substrates were generated within the cytoplasm of mouse OST7-1 cells using T7 RNA polymerase. Unprocessed RNA and products ofintracellular cleavage were detected and analyzed using a primer-extension assay. Ribozyme-containing transcripts accumulated to a level of 4 x 10(4) copies per cell, and self-processing proceeded to an extent of >75% within cells. Cellular RNA processing was blocked by mutations within the ribozyme (G8A, G21U) or substrate (DeltaA-1) that, in vitro , eliminate cleavage without affecting substrate binding. In addition to self-processing activity, trans -cleavage reactions were supported by the ribozyme-containing product of the self-processing reaction, and by the ribozyme linked to the non-cleavable substrate analog. Ribozyme activity was present in extracts of cells expressing constructs with active ribozyme domains. These results provide direct biochemical evidence for the catalytic activity of the hairpin ribozyme in a cellular environment, and indicate that self-processing ribozyme transcripts may be well suited for cellular RNA-inactivation experiments.

Full Text

The Full Text of this article is available as a PDF (415.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck J., Nassal M. Efficient hammerhead ribozyme-mediated cleavage of the structured hepatitis B virus encapsidation signal in vitro and in cell extracts, but not in intact cells. Nucleic Acids Res. 1995 Dec 25;23(24):4954–4962. doi: 10.1093/nar/23.24.4954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bertrand E., Pictet R., Grange T. Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res. 1994 Feb 11;22(3):293–300. doi: 10.1093/nar/22.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berzal-Herranz A., Joseph S., Burke J. M. In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev. 1992 Jan;6(1):129–134. doi: 10.1101/gad.6.1.129. [DOI] [PubMed] [Google Scholar]
  4. Berzal-Herranz A., Joseph S., Chowrira B. M., Butcher S. E., Burke J. M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 1993 Jun;12(6):2567–2573. doi: 10.1002/j.1460-2075.1993.tb05912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borneman J., Tritz R., Hampel A., Altschuler M. Detection of cleavage products from an in vivo transcribed cis hairpin ribozyme in turnips using the CaMV plant virus. Gene. 1995 Jul 4;159(2):137–142. doi: 10.1016/0378-1119(95)00173-4. [DOI] [PubMed] [Google Scholar]
  6. Butcher S. E., Burke J. M. A photo-cross-linkable tertiary structure motif found in functionally distinct RNA molecules is essential for catalytic function of the hairpin ribozyme. Biochemistry. 1994 Feb 1;33(4):992–999. doi: 10.1021/bi00170a018. [DOI] [PubMed] [Google Scholar]
  7. Butcher S. E., Burke J. M. Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex. J Mol Biol. 1994 Nov 18;244(1):52–63. doi: 10.1006/jmbi.1994.1703. [DOI] [PubMed] [Google Scholar]
  8. Cech T. R. Ribozymes and their medical implications. JAMA. 1988 Nov 25;260(20):3030–3034. [PubMed] [Google Scholar]
  9. Cech T. R., Zaug A. J., Grabowski P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec;27(3 Pt 2):487–496. doi: 10.1016/0092-8674(81)90390-1. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Chowrira B. M., Berzal-Herranz A., Burke J. M. Ionic requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme. Biochemistry. 1993 Feb 2;32(4):1088–1095. doi: 10.1021/bi00055a014. [DOI] [PubMed] [Google Scholar]
  12. Chowrira B. M., Berzal-Herranz A., Keller C. F., Burke J. M. Four ribose 2'-hydroxyl groups essential for catalytic function of the hairpin ribozyme. J Biol Chem. 1993 Sep 15;268(26):19458–19462. [PubMed] [Google Scholar]
  13. Chowrira B. M., Pavco P. A., McSwiggen J. A. In vitro and in vivo comparison of hammerhead, hairpin, and hepatitis delta virus self-processing ribozyme cassettes. J Biol Chem. 1994 Oct 14;269(41):25856–25864. [PubMed] [Google Scholar]
  14. Donahue C. P., Fedor M. J. Kinetics of hairpin ribozyme cleavage in yeast. RNA. 1997 Sep;3(9):961–973. [PMC free article] [PubMed] [Google Scholar]
  15. Elroy-Stein O., Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743–6747. doi: 10.1073/pnas.87.17.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Esteban J. A., Banerjee A. R., Burke J. M. Kinetic mechanism of the hairpin ribozyme. Identification and characterization of two nonexchangeable conformations. J Biol Chem. 1997 May 23;272(21):13629–13639. doi: 10.1074/jbc.272.21.13629. [DOI] [PubMed] [Google Scholar]
  17. Feldstein P. A., Bruening G. Catalytically active geometry in the reversible circularization of 'mini-monomer' RNAs derived from the complementary strand of tobacco ringspot virus satellite RNA. Nucleic Acids Res. 1993 Apr 25;21(8):1991–1998. doi: 10.1093/nar/21.8.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Feldstein P. A., Buzayan J. M., Bruening G. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. 1989 Oct 15;82(1):53–61. doi: 10.1016/0378-1119(89)90029-2. [DOI] [PubMed] [Google Scholar]
  19. Hampel A., Tritz R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry. 1989 Jun 13;28(12):4929–4933. doi: 10.1021/bi00438a002. [DOI] [PubMed] [Google Scholar]
  20. Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
  21. Heidenreich O., Xu X., Nerenberg M. A hammerhead ribozyme cleaves its target RNA during RNA preparation. Antisense Nucleic Acid Drug Dev. 1996 Summer;6(2):141–144. doi: 10.1089/oli.1.1996.6.141. [DOI] [PubMed] [Google Scholar]
  22. Lee J. J., Costlow N. A. A molecular titration assay to measure transcript prevalence levels. Methods Enzymol. 1987;152:633–648. doi: 10.1016/0076-6879(87)52070-5. [DOI] [PubMed] [Google Scholar]
  23. London R. E. Methods for measurement of intracellular magnesium: NMR and fluorescence. Annu Rev Physiol. 1991;53:241–258. doi: 10.1146/annurev.ph.53.030191.001325. [DOI] [PubMed] [Google Scholar]
  24. Long D. M., Uhlenbeck O. C. Self-cleaving catalytic RNA. FASEB J. 1993 Jan;7(1):25–30. doi: 10.1096/fasebj.7.1.8422971. [DOI] [PubMed] [Google Scholar]
  25. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  26. Murphy E., Freudenrich C. C., Lieberman M. Cellular magnesium and Na/Mg exchange in heart cells. Annu Rev Physiol. 1991;53:273–287. doi: 10.1146/annurev.ph.53.030191.001421. [DOI] [PubMed] [Google Scholar]
  27. Ohkawa J., Koguma T., Kohda T., Taira K. Ribozymes: from mechanistic studies to applications in vivo. J Biochem. 1995 Aug;118(2):251–258. doi: 10.1093/oxfordjournals.jbchem.a124899. [DOI] [PubMed] [Google Scholar]
  28. Ohkawa J., Yuyama N., Takebe Y., Nishikawa S., Taira K. Importance of independence in ribozyme reactions: kinetic behavior of trimmed and of simply connected multiple ribozymes with potential activity against human immunodeficiency virus. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11302–11306. doi: 10.1073/pnas.90.23.11302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perrotta A. T., Been M. D. The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. Nucleic Acids Res. 1990 Dec 11;18(23):6821–6827. doi: 10.1093/nar/18.23.6821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Prody G. A., Bakos J. T., Buzayan J. M., Schneider I. R., Bruening G. Autolytic processing of dimeric plant virus satellite RNA. Science. 1986 Mar 28;231(4745):1577–1580. doi: 10.1126/science.231.4745.1577. [DOI] [PubMed] [Google Scholar]
  31. Romani A., Scarpa A. Regulation of cell magnesium. Arch Biochem Biophys. 1992 Oct;298(1):1–12. doi: 10.1016/0003-9861(92)90086-c. [DOI] [PubMed] [Google Scholar]
  32. Rymaszewski Z., Abplanalp W. A., Cohen R. M., Chomczynski P. Estimation of cellular DNA content in cell lysates suitable for RNA isolation. Anal Biochem. 1990 Jul;188(1):91–96. doi: 10.1016/0003-2697(90)90532-e. [DOI] [PubMed] [Google Scholar]
  33. Sargueil B., Pecchia D. B., Burke J. M. An improved version of the hairpin ribozyme functions as a ribonucleoprotein complex. Biochemistry. 1995 Jun 13;34(23):7739–7748. doi: 10.1021/bi00023a021. [DOI] [PubMed] [Google Scholar]
  34. Saxena S. K., Ackerman E. J. Ribozymes correctly cleave a model substrate and endogenous RNA in vivo. J Biol Chem. 1990 Oct 5;265(28):17106–17109. [PubMed] [Google Scholar]
  35. Sioud M., Drlica K. Prevention of human immunodeficiency virus type 1 integrase expression in Escherichia coli by a ribozyme. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7303–7307. doi: 10.1073/pnas.88.16.7303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sioud M., Natvig J. B., Førre O. Preformed ribozyme destroys tumour necrosis factor mRNA in human cells. J Mol Biol. 1992 Feb 20;223(4):831–835. doi: 10.1016/0022-2836(92)90244-e. [DOI] [PubMed] [Google Scholar]
  37. Sioud M., Opstad A., Zhao J. Q., Levitz R., Benham C., Drlica K. In vivo decay kinetic parameters of hammerhead ribozymes. Nucleic Acids Res. 1994 Dec 25;22(25):5571–5575. doi: 10.1093/nar/22.25.5571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thompson J. D., Ayers D. F., Malmstrom T. A., McKenzie T. L., Ganousis L., Chowrira B. M., Couture L., Stinchcomb D. T. Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucleic Acids Res. 1995 Jun 25;23(12):2259–2268. doi: 10.1093/nar/23.12.2259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walter N. G., Burke J. M. Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA. 1997 Apr;3(4):392–404. [PMC free article] [PubMed] [Google Scholar]
  40. Yamada O., Kraus G., Sargueil B., Yu Q., Burke J. M., Wong-Staal F. Conservation of a hairpin ribozyme sequence in HIV-1 is required for efficient viral replication. Virology. 1996 Jun 15;220(2):361–366. doi: 10.1006/viro.1996.0324. [DOI] [PubMed] [Google Scholar]
  41. Zaug A. J., Been M. D., Cech T. R. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature. 1986 Dec 4;324(6096):429–433. doi: 10.1038/324429a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES