Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 15;26(16):3806–3812. doi: 10.1093/nar/26.16.3806

The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase.

M A Cervin 1, R J Lewis 1, J A Brannigan 1, G B Spiegelman 1
PMCID: PMC147748  PMID: 9685500

Abstract

Initiation of sporulation in Bacillus subtilis is controlled by several regulators which affect activation by phosphorylation of the key response regulator Spo0A or transcription of Spo0A-P-dependent genes. In vivo overexpression of one of these regulators, sinR , results in suppression of transcription from the Spo0A-P-dependent promoters of spo0A , spoIIA , spoIIE and spoIIG and in vitro SinR binds to the promoters of the spoIIA operon and the spo0A gene. In this study we have demonstrated that in vitro SinR directly repressed Spo0A- P-dependent transcription by B.subtilis RNA polymerase from the spoIIG operon promoter. SinR inhibited transcription prior to formation of heparin-resistant complexes but did not displace RNA polymerase from the spoIIG promoter. DNase I protection studies demonstrated that SinR protected a large region of the spoIIG promoter and induced DNase I hypersensitive sites, particularly around the 0A boxes, at the same positions as those induced by zinc. Since binding of zinc induces bends in the DNA, we concluded that SinR binding also altered the conformation of the spoIIG promoter. We propose that SinR-induced conformational changes in Spo0A-dependent promoters prevent activation of trans-cription by Spo0A-P.

Full Text

The Full Text of this article is available as a PDF (138.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai U., Mandic-Mulec I., Smith I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 1993 Jan;7(1):139–148. doi: 10.1101/gad.7.1.139. [DOI] [PubMed] [Google Scholar]
  2. Baldus J. M., Green B. D., Youngman P., Moran C. P., Jr Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol. 1994 Jan;176(2):296–306. doi: 10.1128/jb.176.2.296-306.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bird T. H., Grimsley J. K., Hoch J. A., Spiegelman G. B. Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon. Mol Microbiol. 1993 Aug;9(4):741–749. doi: 10.1111/j.1365-2958.1993.tb01734.x. [DOI] [PubMed] [Google Scholar]
  4. Bird T. H., Grimsley J. K., Hoch J. A., Spiegelman G. B. The Bacillus subtilis response regulator Spo0A stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes. J Mol Biol. 1996 Mar 1;256(3):436–448. doi: 10.1006/jmbi.1996.0099. [DOI] [PubMed] [Google Scholar]
  5. Bird T., Burbulys D., Wu J. J., Strauch M. A., Hoch J. A., Spiegelman G. B. The effect of supercoiling on the in vitro transcription of the spoIIA operon from Bacillus subtilis. Biochimie. 1992 Jul-Aug;74(7-8):627–634. doi: 10.1016/0300-9084(92)90134-z. [DOI] [PubMed] [Google Scholar]
  6. Burbulys D., Trach K. A., Hoch J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell. 1991 Feb 8;64(3):545–552. doi: 10.1016/0092-8674(91)90238-t. [DOI] [PubMed] [Google Scholar]
  7. Cervin M. A., Spiegelman G. B., Raether B., Ohlsen K., Perego M., Hoch J. A. A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis. Mol Microbiol. 1998 Jul;29(1):85–95. doi: 10.1046/j.1365-2958.1998.00905.x. [DOI] [PubMed] [Google Scholar]
  8. Dobinson K. F., Spiegelman G. B. Effect of the delta subunit of Bacillus subtilis RNA polymerase on initiation of RNA synthesis at two bacteriophage phi 29 promoters. Biochemistry. 1987 Dec 15;26(25):8206–8213. doi: 10.1021/bi00399a028. [DOI] [PubMed] [Google Scholar]
  9. Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev. 1993 Mar;57(1):1–33. doi: 10.1128/mr.57.1.1-33.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaur N. K., Dubnau E., Smith I. Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J Bacteriol. 1986 Nov;168(2):860–869. doi: 10.1128/jb.168.2.860-869.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gaur N. K., Dubnau E., Smith I. Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J Bacteriol. 1986 Nov;168(2):860–869. doi: 10.1128/jb.168.2.860-869.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gaur N. K., Oppenheim J., Smith I. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J Bacteriol. 1991 Jan;173(2):678–686. doi: 10.1128/jb.173.2.678-686.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grimsley J. K., Tjalkens R. B., Strauch M. A., Bird T. H., Spiegelman G. B., Hostomsky Z., Whiteley J. M., Hoch J. A. Subunit composition and domain structure of the Spo0A sporulation transcription factor of Bacillus subtilis. J Biol Chem. 1994 Jun 17;269(24):16977–16982. [PubMed] [Google Scholar]
  14. Harrison S. C., Aggarwal A. K. DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. [DOI] [PubMed] [Google Scholar]
  15. Hoch J. A. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol. 1993;47:441–465. doi: 10.1146/annurev.mi.47.100193.002301. [DOI] [PubMed] [Google Scholar]
  16. Koudelka G. B., Lam C. Y. Differential recognition of OR1 and OR3 by bacteriophage 434 repressor and Cro. J Biol Chem. 1993 Nov 15;268(32):23812–23817. [PubMed] [Google Scholar]
  17. Laundon C. H., Griffith J. D. Cationic metals promote sequence-directed DNA bending. Biochemistry. 1987 Jun 30;26(13):3759–3762. doi: 10.1021/bi00387a003. [DOI] [PubMed] [Google Scholar]
  18. Lewis R. J., Brannigan J. A., Smith I., Wilkinson A. J. Crystallisation of the Bacillus subtilis sporulation inhibitor SinR, complexed with its antagonist, SinI. FEBS Lett. 1996 Jan 2;378(1):98–100. doi: 10.1016/0014-5793(95)01432-2. [DOI] [PubMed] [Google Scholar]
  19. Mandic-Mulec I., Doukhan L., Smith I. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J Bacteriol. 1995 Aug;177(16):4619–4627. doi: 10.1128/jb.177.16.4619-4627.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mandic-Mulec I., Gaur N., Bai U., Smith I. Sin, a stage-specific repressor of cellular differentiation. J Bacteriol. 1992 Jun;174(11):3561–3569. doi: 10.1128/jb.174.11.3561-3569.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martínez-Balbás M. A., Jiménez-García E., Azorín F. Zinc(II) ions selectively interact with DNA sequences present at the TFIIIA binding site of the Xenopus 5S-RNA gene. Nucleic Acids Res. 1995 Jul 11;23(13):2464–2471. doi: 10.1093/nar/23.13.2464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nickol J., Rau D. C. Zinc induces a bend within the transcription factor IIIA-binding region of the 5 S RNA gene. J Mol Biol. 1992 Dec 20;228(4):1115–1123. doi: 10.1016/0022-2836(92)90319-f. [DOI] [PubMed] [Google Scholar]
  23. Ohlsen K. L., Grimsley J. K., Hoch J. A. Deactivation of the sporulation transcription factor Spo0A by the Spo0E protein phosphatase. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1756–1760. doi: 10.1073/pnas.91.5.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perego M., Hanstein C., Welsh K. M., Djavakhishvili T., Glaser P., Hoch J. A. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell. 1994 Dec 16;79(6):1047–1055. doi: 10.1016/0092-8674(94)90035-3. [DOI] [PubMed] [Google Scholar]
  25. Satola S., Kirchman P. A., Moran C. P., Jr Spo0A binds to a promoter used by sigma A RNA polymerase during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4533–4537. doi: 10.1073/pnas.88.10.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sekiguchi J., Ezaki B., Kodama K., Akamatsu T. Molecular cloning of a gene affecting the autolysin level and flagellation in Bacillus subtilis. J Gen Microbiol. 1988 Jun;134(6):1611–1621. doi: 10.1099/00221287-134-6-1611. [DOI] [PubMed] [Google Scholar]
  27. Strauch M. A., Hoch J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol. 1993 Feb;7(3):337–342. doi: 10.1111/j.1365-2958.1993.tb01125.x. [DOI] [PubMed] [Google Scholar]
  28. Strauch M., Webb V., Spiegelman G., Hoch J. A. The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1801–1805. doi: 10.1073/pnas.87.5.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weickert M. J., Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem. 1992 Aug 5;267(22):15869–15874. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES