Abstract
Nucleolytic processing of chromosomal DNA is required in operations such as DNA repair, recombination and replication. We have identified a human gene, named HEX1 forhumanexonuclease 1, by searching the EST database for cDNAs that encode a homolog to the Saccharomyces cerevisiae EXO1 gene product. Based on its homology to this and other DNA repair proteins of the Rad2 family, most notably Schizosaccharomyces pombe exonuclease 1 (Exo1), Hex1 presumably functions as a nuclease in aspects of recombination or mismatch repair. Similar to the yeast proteins, recombinant Hex1 exhibits a 5'-->3' exonuclease activity. Northern blot analysis revealed that HEX1 expression is highest in fetal liver and adult bone marrow, suggesting that the encoded protein may operate prominently in processes specific to hemopoietic stem cell development. HEX1 gene equivalents were found in all vertebrates examined. The human gene includes 14 exons and 13 introns that span approximately 42 kb of genomic DNA and maps to the chromosomal position 1q42-43, a region lost in some cases of acute leukemia and in several solid tumors.
Full Text
The Full Text of this article is available as a PDF (415.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alani E., Padmore R., Kleckner N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell. 1990 May 4;61(3):419–436. doi: 10.1016/0092-8674(90)90524-i. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Arnheim N., Shibata D. DNA mismatch repair in mammals: role in disease and meiosis. Curr Opin Genet Dev. 1997 Jun;7(3):364–370. doi: 10.1016/s0959-437x(97)80150-5. [DOI] [PubMed] [Google Scholar]
- Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
- Brookman K. W., Lamerdin J. E., Thelen M. P., Hwang M., Reardon J. T., Sancar A., Zhou Z. Q., Walter C. A., Parris C. N., Thompson L. H. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol. 1996 Nov;16(11):6553–6562. doi: 10.1128/mcb.16.11.6553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao L., Alani E., Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. doi: 10.1016/0092-8674(90)90072-m. [DOI] [PubMed] [Google Scholar]
- Ceska T. A., Sayers J. R., Stier G., Suck D. A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease. Nature. 1996 Jul 4;382(6586):90–93. doi: 10.1038/382090a0. [DOI] [PubMed] [Google Scholar]
- Chu G. Double strand break repair. J Biol Chem. 1997 Sep 26;272(39):24097–24100. doi: 10.1074/jbc.272.39.24097. [DOI] [PubMed] [Google Scholar]
- Digilio F. A., Pannuti A., Lucchesi J. C., Furia M., Polito L. C. Tosca: a Drosophila gene encoding a nuclease specifically expressed in the female germline. Dev Biol. 1996 Aug 25;178(1):90–100. doi: 10.1006/dbio.1996.0200. [DOI] [PubMed] [Google Scholar]
- Fiorentini P., Huang K. N., Tishkoff D. X., Kolodner R. D., Symington L. S. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol. 1997 May;17(5):2764–2773. doi: 10.1128/mcb.17.5.2764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
- Fishel R., Wilson T. MutS homologs in mammalian cells. Curr Opin Genet Dev. 1997 Feb;7(1):105–113. doi: 10.1016/s0959-437x(97)80117-7. [DOI] [PubMed] [Google Scholar]
- Gellert M. Recent advances in understanding V(D)J recombination. Adv Immunol. 1997;64:39–64. doi: 10.1016/s0065-2776(08)60886-x. [DOI] [PubMed] [Google Scholar]
- Harrington J. J., Lieber M. R. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 1994 Mar 1;13(5):1235–1246. doi: 10.1002/j.1460-2075.1994.tb06373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heim S., Teixeira M. R., Dietrich C. U., Pandis N. Cytogenetic polyclonality in tumors of the breast. Cancer Genet Cytogenet. 1997 May;95(1):16–19. doi: 10.1016/s0165-4608(96)00322-6. [DOI] [PubMed] [Google Scholar]
- Henderson G., Simons J. P. Processing of DNA prior to illegitimate recombination in mouse cells. Mol Cell Biol. 1997 Jul;17(7):3779–3785. doi: 10.1128/mcb.17.7.3779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang K. N., Symington L. S. A 5'-3' exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology. Mol Cell Biol. 1993 Jun;13(6):3125–3134. doi: 10.1128/mcb.13.6.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johansson B., Mertens F., Mitelman F. Cytogenetic evolution patterns in non-Hodgkin's lymphoma. Blood. 1995 Nov 15;86(10):3905–3914. [PubMed] [Google Scholar]
- Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
- Lattion A. L., Espel E., Reichenbach P., Fromental C., Bucher P., Israël A., Baeuerle P., Rice N. R., Nabholz M. Characterization of a new tissue-specific transcription factor binding to the simian virus 40 enhancer TC-II (NF-kappa B) element. Mol Cell Biol. 1992 Nov;12(11):5217–5227. doi: 10.1128/mcb.12.11.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieber M. R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays. 1997 Mar;19(3):233–240. doi: 10.1002/bies.950190309. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Karran P., Wood R. D. DNA excision repair pathways. Curr Opin Genet Dev. 1997 Apr;7(2):158–169. doi: 10.1016/s0959-437x(97)80124-4. [DOI] [PubMed] [Google Scholar]
- Liu B., Parsons R. E., Hamilton S. R., Petersen G. M., Lynch H. T., Watson P., Markowitz S., Willson J. K., Green J., de la Chapelle A. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 1994 Sep 1;54(17):4590–4594. [PubMed] [Google Scholar]
- Lowsky R., DeCoteau J. F., Reitmair A. H., Ichinohasama R., Dong W. F., Xu Y., Mak T. W., Kadin M. E., Minden M. D. Defects of the mismatch repair gene MSH2 are implicated in the development of murine and human lymphoblastic lymphomas and are associated with the aberrant expression of rhombotin-2 (Lmo-2) and Tal-1 (SCL). Blood. 1997 Apr 1;89(7):2276–2282. [PubMed] [Google Scholar]
- Mieczkowski P. A., Fikus M. U., Ciesla Z. Characterization of a novel DNA damage-inducible gene of Saccharomyces cerevisiae, DIN7, which is a structural homolog of the RAD2 and RAD27 DNA repair genes. Mol Gen Genet. 1997 Feb 27;253(6):655–665. doi: 10.1007/s004380050369. [DOI] [PubMed] [Google Scholar]
- Mitelman F., Mertens F., Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet. 1997 Apr;15(Spec No):417–474. doi: 10.1038/ng0497supp-417. [DOI] [PubMed] [Google Scholar]
- Modrich P. Strand-specific mismatch repair in mammalian cells. J Biol Chem. 1997 Oct 3;272(40):24727–24730. doi: 10.1074/jbc.272.40.24727. [DOI] [PubMed] [Google Scholar]
- Mueser T. C., Nossal N. G., Hyde C. C. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell. 1996 Jun 28;85(7):1101–1112. doi: 10.1016/s0092-8674(00)81310-0. [DOI] [PubMed] [Google Scholar]
- O'Donovan A., Davies A. A., Moggs J. G., West S. C., Wood R. D. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature. 1994 Sep 29;371(6496):432–435. doi: 10.1038/371432a0. [DOI] [PubMed] [Google Scholar]
- Paull T. T., Gellert M. The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell. 1998 Jun;1(7):969–979. doi: 10.1016/s1097-2765(00)80097-0. [DOI] [PubMed] [Google Scholar]
- Quandt K., Frech K., Karas H., Wingender E., Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995 Dec 11;23(23):4878–4884. doi: 10.1093/nar/23.23.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen B., Nolan J. P., Sklar L. A., Park M. S. Essential amino acids for substrate binding and catalysis of human flap endonuclease 1. J Biol Chem. 1996 Apr 19;271(16):9173–9176. doi: 10.1074/jbc.271.16.9173. [DOI] [PubMed] [Google Scholar]
- Siegal G., Turchi J. J., Myers T. W., Bambara R. A. A 5' to 3' exonuclease functionally interacts with calf DNA polymerase epsilon. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9377–9381. doi: 10.1073/pnas.89.20.9377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith V., Chou K. N., Lashkari D., Botstein D., Brown P. O. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science. 1996 Dec 20;274(5295):2069–2074. doi: 10.1126/science.274.5295.2069. [DOI] [PubMed] [Google Scholar]
- Stavnezer J. Immunoglobulin class switching. Curr Opin Immunol. 1996 Apr;8(2):199–205. doi: 10.1016/s0952-7915(96)80058-6. [DOI] [PubMed] [Google Scholar]
- Sun H., Treco D., Szostak J. W. Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991 Mar 22;64(6):1155–1161. doi: 10.1016/0092-8674(91)90270-9. [DOI] [PubMed] [Google Scholar]
- Szankasi P., Smith G. R. A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J Biol Chem. 1992 Feb 15;267(5):3014–3023. [PubMed] [Google Scholar]
- Szankasi P., Smith G. R. A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science. 1995 Feb 24;267(5201):1166–1169. doi: 10.1126/science.7855597. [DOI] [PubMed] [Google Scholar]
- Tishkoff D. X., Boerger A. L., Bertrand P., Filosi N., Gaida G. M., Kane M. F., Kolodner R. D. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7487–7492. doi: 10.1073/pnas.94.14.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trask B., Fertitta A., Christensen M., Youngblom J., Bergmann A., Copeland A., de Jong P., Mohrenweiser H., Olsen A., Carrano A. Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics. 1993 Jan;15(1):133–145. doi: 10.1006/geno.1993.1021. [DOI] [PubMed] [Google Scholar]
- Tsubouchi H., Ogawa H. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol Cell Biol. 1998 Jan;18(1):260–268. doi: 10.1128/mcb.18.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uberbacher E. C., Mural R. J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11261–11265. doi: 10.1073/pnas.88.24.11261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waga S., Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature. 1994 May 19;369(6477):207–212. doi: 10.1038/369207a0. [DOI] [PubMed] [Google Scholar]
- Wilson D. M., 3rd, Thompson L. H. Life without DNA repair. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12754–12757. doi: 10.1073/pnas.94.24.12754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood R. D. Nucleotide excision repair in mammalian cells. J Biol Chem. 1997 Sep 19;272(38):23465–23468. doi: 10.1074/jbc.272.38.23465. [DOI] [PubMed] [Google Scholar]
- Zingg J. M., Jones P. A. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis. 1997 May;18(5):869–882. doi: 10.1093/carcin/18.5.869. [DOI] [PubMed] [Google Scholar]