Abstract
The use of a simple fluorescent nucleoside analogue in detection of point mutations by hybridization in solution is described. Pyrene is placed at 3' and 5' ends of a pair of oligodeoxynucleotide probes via a phosphoramidite derivative of deoxyribose with this fluorophore attached at the 1' position, replacing a DNA base. Adjacent binding of dual probes containing this fluorophore to a complementary target sequence results in a pronounced spectral change from blue pyrene monomer emission (lambdamax= 381 398 nm) to green-white excimer emission (lambdamax= 490 nm). Optimization of the relative binding positions of the two probes shows that the greatest spectral change occurs when they bind with partial end overlap. In optimum orientation, the monomer emission band for the probes decreases intensity by as much as a factor of seven and the excimer band increases up to 40-fold on binding a complementary target. Application to the detection of a single-base point mutation in solution is described.
Full Text
The Full Text of this article is available as a PDF (103.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernard P. S., Lay M. J., Wittwer C. T. Integrated amplification and detection of the C677T point mutation in the methylenetetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves. Anal Biochem. 1998 Jan 1;255(1):101–107. doi: 10.1006/abio.1997.2427. [DOI] [PubMed] [Google Scholar]
- Cardullo R. A., Agrawal S., Flores C., Zamecnik P. C., Wolf D. E. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8790–8794. doi: 10.1073/pnas.85.23.8790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Zehnbauer B., Gnirke A., Kwok P. Y. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10756–10761. doi: 10.1073/pnas.94.20.10756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebata K., Masuko M., Ohtani H., Kashiwasake-Jibu M. Nucleic acid hybridization accompanied with excimer formation from two pyrene-labeled probes. Photochem Photobiol. 1995 Nov;62(5):836–839. doi: 10.1111/j.1751-1097.1995.tb09144.x. [DOI] [PubMed] [Google Scholar]
- Kitamura M., Nimura A., Yamana K., Shimidzu T. Oligonucleotides with bis-pyrene adduct in the backbone: syntheses and properties of intramolecular excimer forming probe. Nucleic Acids Symp Ser. 1991;(25):67–68. [PubMed] [Google Scholar]
- Korshun V. A., Pestov N. B., Birikh K. R., Berlin Y. A. Reagent for introducing pyrene residues in oligonucleotides. Bioconjug Chem. 1992 Nov-Dec;3(6):559–562. doi: 10.1021/bc00018a016. [DOI] [PubMed] [Google Scholar]
- Mann J. S., Shibata Y., Meehan T. Synthesis and properties of an oligodeoxynucleotide modified with a pyrene derivative at the 5'-phosphate. Bioconjug Chem. 1992 Nov-Dec;3(6):554–558. doi: 10.1021/bc00018a015. [DOI] [PubMed] [Google Scholar]
- Mergny J. L., Garestier T., Rougée M., Lebedev A. V., Chassignol M., Thuong N. T., Hélène C. Fluorescence energy transfer between two triple helix-forming oligonucleotides bound to duplex DNA. Biochemistry. 1994 Dec 27;33(51):15321–15328. doi: 10.1021/bi00255a013. [DOI] [PubMed] [Google Scholar]
- Moran S., Ren R. X., Sheils C. J., Rumney S., 4th, Kool E. T. Non-hydrogen bonding 'terminator' nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis. Nucleic Acids Res. 1996 Jun 1;24(11):2044–2052. doi: 10.1093/nar/24.11.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy E. P., Reynolds R. K., Santos E., Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature. 1982 Nov 11;300(5888):149–152. doi: 10.1038/300149a0. [DOI] [PubMed] [Google Scholar]
- Selvin P. R., Hearst J. E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10024–10028. doi: 10.1073/pnas.91.21.10024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swan D. C., Tucker R. A., Holloway B. P., Icenogle J. P. A sensitive, type-specific, fluorogenic probe assay for detection of human papillomavirus DNA. J Clin Microbiol. 1997 Apr;35(4):886–891. doi: 10.1128/jcm.35.4.886-891.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyagi S., Bratu D. P., Kramer F. R. Multicolor molecular beacons for allele discrimination. Nat Biotechnol. 1998 Jan;16(1):49–53. doi: 10.1038/nbt0198-49. [DOI] [PubMed] [Google Scholar]
- Tyagi S., Kramer F. R. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996 Mar;14(3):303–308. doi: 10.1038/nbt0396-303. [DOI] [PubMed] [Google Scholar]
- Wittwer C. T., Herrmann M. G., Moss A. A., Rasmussen R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997 Jan;22(1):130-1, 134-8. doi: 10.2144/97221bi01. [DOI] [PubMed] [Google Scholar]
- Yamana K., Gokota T., Ohashi Y., Ozaki H., Kitamura M., Nakano H., Sangen O., Shimidzu T. Oligonucleotides with pyrene fluorophore at the sugar fragment: synthesis and properties in binding to complementary polynucleotide. Nucleic Acids Symp Ser. 1990;(22):103–104. [PubMed] [Google Scholar]
