Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 15;26(16):3845–3853. doi: 10.1093/nar/26.16.3845

Thermodynamic and base-pairing studies of matched and mismatched DNA dodecamer duplexes containing cis-syn, (6-4) and Dewar photoproducts of TT.

Y Jing 1, J F Kao 1, J S Taylor 1
PMCID: PMC147757  PMID: 9685504

Abstract

Cis-syn dimers, (6-4) products and their Dewar valence isomers are the major photoproducts of DNA and have different mutagenic properties and rates of repair. To begin to understand the physical basis for these differences, the thermal stability and base pairing properties of the corresponding photoproducts of the TT site in d(GAGTATTATGAG) were investigated. The (6-4) and Dewar products destabilize the duplex form by approximately 6 kcal/mol of free energy at 37 degreesC relative to the parent, whereas a cis-syn dimer only destabilizes the duplex form by 1.5 kcal/mol. Duplexes with G opposite the 3'-T of the (6-4) and Dewar products are more stable than those with A by approximately 0.4 kcal/mol, whereas the cis-syn dimer prefers A over G by 0.7 kcal/mol. Proton NMR suggests that wobble base pairing takes place between the 3'-T of the cis-syn dimer and an opposed G, whereas there is no evidence of significant H-bonding between these two bases in the (6-4) product. The thermodynamic and H-bonding data for the (6-4) product are consistent with a 4 nt interior loop structure which may facilitate flipping of the photoproduct in and out of the helix.

Full Text

The Full Text of this article is available as a PDF (175.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee S. K., Borden A., Christensen R. B., LeClerc J. E., Lawrence C. W. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uninduced cells. J Bacteriol. 1990 Apr;172(4):2105–2112. doi: 10.1128/jb.172.4.2105-2112.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee S. K., Christensen R. B., Lawrence C. W., LeClerc J. E. Frequency and spectrum of mutations produced by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8141–8145. doi: 10.1073/pnas.85.21.8141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breslauer K. J. Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions. Methods Enzymol. 1995;259:221–242. doi: 10.1016/0076-6879(95)59046-3. [DOI] [PubMed] [Google Scholar]
  4. Ciarrocchi G., Pedrini A. M. Determination of pyrimidine dimer unwinding angle by measurement of DNA electrophoretic mobility. J Mol Biol. 1982 Feb 25;155(2):177–183. doi: 10.1016/0022-2836(82)90445-4. [DOI] [PubMed] [Google Scholar]
  5. Cleaver J. E., Jen J., Charles W. C., Mitchell D. L. Cyclobutane dimers and (6-4) photoproducts in human cells are mended with the same patch sizes. Photochem Photobiol. 1991 Sep;54(3):393–402. doi: 10.1111/j.1751-1097.1991.tb02033.x. [DOI] [PubMed] [Google Scholar]
  6. Faibis V., Cognet J. A., Boulard Y., Sowers L. C., Fazakerley G. V. Solution structure of two mismatches G.G and I.I in the K-ras gene context by nuclear magnetic resonance and molecular dynamics. Biochemistry. 1996 Nov 19;35(46):14452–14464. doi: 10.1021/bi960871e. [DOI] [PubMed] [Google Scholar]
  7. Fujiwara Y., Iwai S. Thermodynamic studies of the hybridization properties of photolesions in DNA. Biochemistry. 1997 Feb 11;36(6):1544–1550. doi: 10.1021/bi9619942. [DOI] [PubMed] [Google Scholar]
  8. Gibbs P. E., Kilbey B. J., Banerjee S. K., Lawrence C. W. The frequency and accuracy of replication past a thymine-thymine cyclobutane dimer are very different in Saccharomyces cerevisiae and Escherichia coli. J Bacteriol. 1993 May;175(9):2607–2612. doi: 10.1128/jb.175.9.2607-2612.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horsfall M. J., Lawrence C. W. Accuracy of replication past the T-C (6-4) adduct. J Mol Biol. 1994 Jan 14;235(2):465–471. doi: 10.1006/jmbi.1994.1006. [DOI] [PubMed] [Google Scholar]
  10. Hwang G. S., Kim J. K., Choi B. S. NMR structural studies of DNA decamer duplex containing the Dewar photoproduct of thymidylyl(3'-- >5')thymidine. Conformational changes of the oligonucleotide duplex by photoconversion of a (6-4) adduct to its Dewar valence isomer. Eur J Biochem. 1996 Jan 15;235(1-2):359–365. doi: 10.1111/j.1432-1033.1996.00359.x. [DOI] [PubMed] [Google Scholar]
  11. Jiang N., Taylor J. S. In vivo evidence that UV-induced C-->T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry. 1993 Jan 19;32(2):472–481. doi: 10.1021/bi00053a011. [DOI] [PubMed] [Google Scholar]
  12. Kalnik M. W., Kouchakdjian M., Li B. F., Swann P. F., Patel D. J. Base pair mismatches and carcinogen-modified bases in DNA: an NMR study of G.T and G.O4meT pairing in dodecanucleotide duplexes. Biochemistry. 1988 Jan 12;27(1):108–115. doi: 10.1021/bi00401a018. [DOI] [PubMed] [Google Scholar]
  13. Kemmink J., Boelens R., Koning T., van der Marel G. A., van Boom J. H., Kaptein R. 1H NMR study of the exchangeable protons of the duplex d(GCGTTGCG).d(CGCAACGC) containing a thymine photodimer. Nucleic Acids Res. 1987 Jun 11;15(11):4645–4653. doi: 10.1093/nar/15.11.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim J. K., Patel D., Choi B. S. Contrasting structural impacts induced by cis-syn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: implication in mutagenesis and repair activity. Photochem Photobiol. 1995 Jul;62(1):44–50. doi: 10.1111/j.1751-1097.1995.tb05236.x. [DOI] [PubMed] [Google Scholar]
  15. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  16. LeClerc J. E., Borden A., Lawrence C. W. The thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3' thymine-to-cytosine transitions in Escherichia coli. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9685–9689. doi: 10.1073/pnas.88.21.9685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li Y., Agrawal S. Oligonucleotides containing G.A pairs: effect of flanking sequences on structure and stability. Biochemistry. 1995 Aug 8;34(31):10056–10062. doi: 10.1021/bi00031a030. [DOI] [PubMed] [Google Scholar]
  18. Marky L. A., Breslauer K. J. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987 Sep;26(9):1601–1620. doi: 10.1002/bip.360260911. [DOI] [PubMed] [Google Scholar]
  19. Maskos K., Gunn B. M., LeBlanc D. A., Morden K. M. NMR study of G.A and A.A pairing in (dGCGAATAAGCG)2. Biochemistry. 1993 Apr 13;32(14):3583–3595. doi: 10.1021/bi00065a009. [DOI] [PubMed] [Google Scholar]
  20. Mitchell D. L., Haipek C. A., Clarkson J. M. (6-4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers. Mutat Res. 1985 Jul;143(3):109–112. doi: 10.1016/s0165-7992(85)80018-x. [DOI] [PubMed] [Google Scholar]
  21. Mitchell D. L. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol. 1988 Jul;48(1):51–57. doi: 10.1111/j.1751-1097.1988.tb02785.x. [DOI] [PubMed] [Google Scholar]
  22. Mu D., Tursun M., Duckett D. R., Drummond J. T., Modrich P., Sancar A. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol. 1997 Feb;17(2):760–769. doi: 10.1128/mcb.17.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nairn R. S., Mitchell D. L., Adair G. M., Thompson L. H., Siciliano M. J., Humphrey R. M. UV mutagenesis, cytotoxicity and split-dose recovery in a human-CHO cell hybrid having intermediate (6-4) photoproduct repair. Mutat Res. 1989 May;217(3):193–201. doi: 10.1016/0921-8777(89)90071-2. [DOI] [PubMed] [Google Scholar]
  24. Oh E. Y., Grossman L. The effect of Escherichia coli Uvr protein binding on the topology of supercoiled DNA. Nucleic Acids Res. 1986 Nov 11;14(21):8557–8571. doi: 10.1093/nar/14.21.8557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Park H. W., Kim S. T., Sancar A., Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science. 1995 Jun 30;268(5219):1866–1872. doi: 10.1126/science.7604260. [DOI] [PubMed] [Google Scholar]
  26. Pearson M. L., Ottensmeyer F. P., Johns H. E. Properties of an unusual photoproduct of U.V. irradiated thymidylyl-thymidine. Photochem Photobiol. 1965 Sep;4(4):739–747. doi: 10.1111/j.1751-1097.1965.tb07916.x. [DOI] [PubMed] [Google Scholar]
  27. Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983 Jan 18;22(2):256–263. doi: 10.1021/bi00271a004. [DOI] [PubMed] [Google Scholar]
  28. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  29. Plum G. E., Grollman A. P., Johnson F., Breslauer K. J. Influence of the oxidatively damaged adduct 8-oxodeoxyguanosine on the conformation, energetics, and thermodynamic stability of a DNA duplex. Biochemistry. 1995 Dec 12;34(49):16148–16160. doi: 10.1021/bi00049a030. [DOI] [PubMed] [Google Scholar]
  30. Reardon J. T., Nichols A. F., Keeney S., Smith C. A., Taylor J. S., Linn S., Sancar A. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem. 1993 Oct 5;268(28):21301–21308. [PubMed] [Google Scholar]
  31. Rosenberg M., Echols H. Differential recognition of ultraviolet lesions by RecA protein. Possible mechanism for preferential targeting of SOS mutagenesis to (6-4) dipyrimidine sites. J Biol Chem. 1990 Nov 25;265(33):20641–20645. [PubMed] [Google Scholar]
  32. Sancar A. Structure and function of DNA photolyase. Biochemistry. 1994 Jan 11;33(1):2–9. doi: 10.1021/bi00167a001. [DOI] [PubMed] [Google Scholar]
  33. SantaLucia J., Jr, Allawi H. T., Seneviratne P. A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry. 1996 Mar 19;35(11):3555–3562. doi: 10.1021/bi951907q. [DOI] [PubMed] [Google Scholar]
  34. Sklenár V., Brooks B. R., Zon G., Bax A. Absorption mode two-dimensional NOE spectroscopy of exchangeable protons in oligonucleotides. FEBS Lett. 1987 Jun 1;216(2):249–252. doi: 10.1016/0014-5793(87)80699-3. [DOI] [PubMed] [Google Scholar]
  35. Smith C. A., Taylor J. S. Preparation and characterization of a set of deoxyoligonucleotide 49-mers containing site-specific cis-syn, trans-syn-I, (6-4), and Dewar photoproducts of thymidylyl(3'-->5')-thymidine. J Biol Chem. 1993 May 25;268(15):11143–11151. [PubMed] [Google Scholar]
  36. Smith C. A., Wang M., Jiang N., Che L., Zhao X., Taylor J. S. Mutation spectra of M13 vectors containing site-specific Cis-Syn, Trans-Syn-I, (6-4), and Dewar pyrimidone photoproducts of thymidylyl-(3'-->5')-thymidine in Escherichia coli under SOS conditions. Biochemistry. 1996 Apr 2;35(13):4146–4154. doi: 10.1021/bi951975c. [DOI] [PubMed] [Google Scholar]
  37. Svoboda D. L., Smith C. A., Taylor J. S., Sancar A. Effect of sequence, adduct type, and opposing lesions on the binding and repair of ultraviolet photodamage by DNA photolyase and (A)BC excinuclease. J Biol Chem. 1993 May 15;268(14):10694–10700. [PubMed] [Google Scholar]
  38. Szymkowski D. E., Lawrence C. W., Wood R. D. Repair by human cell extracts of single (6-4) and cyclobutane thymine-thymine photoproducts in DNA. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9823–9827. doi: 10.1073/pnas.90.21.9823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Taylor J. S., Garrett D. S., Brockie I. R., Svoboda D. L., Telser J. 1H NMR assignment and melting temperature study of cis-syn and trans-syn thymine dimer containing duplexes of d(CGTATTATGC).d(GCATAATACG). Biochemistry. 1990 Sep 18;29(37):8858–8866. doi: 10.1021/bi00489a049. [DOI] [PubMed] [Google Scholar]
  40. Taylor J. S., Garrett D. S., Cohrs M. P. Solution-state structure of the Dewar pyrimidinone photoproduct of thymidylyl-(3'----5')-thymidine. Biochemistry. 1988 Sep 20;27(19):7206–7215. doi: 10.1021/bi00419a007. [DOI] [PubMed] [Google Scholar]
  41. Taylor J. S., Lu H. F., Kotyk J. J. Quantitative conversion of the (6-4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight. Photochem Photobiol. 1990 Feb;51(2):161–167. doi: 10.1111/j.1751-1097.1990.tb01698.x. [DOI] [PubMed] [Google Scholar]
  42. Tibanyenda N., De Bruin S. H., Haasnoot C. A., van der Marel G. A., van Boom J. H., Hilbers C. W. The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G) . d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A). Eur J Biochem. 1984 Feb 15;139(1):19–27. doi: 10.1111/j.1432-1033.1984.tb07970.x. [DOI] [PubMed] [Google Scholar]
  43. Todo T., Kim S. T., Hitomi K., Otoshi E., Inui T., Morioka H., Kobayashi H., Ohtsuka E., Toh H., Ikenaga M. Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4)photolyase. Nucleic Acids Res. 1997 Feb 15;25(4):764–768. doi: 10.1093/nar/25.4.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Todo T., Ryo H., Yamamoto K., Toh H., Inui T., Ayaki H., Nomura T., Ikenaga M. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science. 1996 Apr 5;272(5258):109–112. doi: 10.1126/science.272.5258.109. [DOI] [PubMed] [Google Scholar]
  45. Turner D. H., Sugimoto N., Freier S. M. RNA structure prediction. Annu Rev Biophys Biophys Chem. 1988;17:167–192. doi: 10.1146/annurev.bb.17.060188.001123. [DOI] [PubMed] [Google Scholar]
  46. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  47. Vesnaver G., Chang C. N., Eisenberg M., Grollman A. P., Breslauer K. J. Influence of abasic and anucleosidic sites on the stability, conformation, and melting behavior of a DNA duplex: correlations of thermodynamic and structural data. Proc Natl Acad Sci U S A. 1989 May;86(10):3614–3618. doi: 10.1073/pnas.86.10.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang C. I., Taylor J. S. Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9072–9076. doi: 10.1073/pnas.88.20.9072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wang C. I., Taylor J. S. The trans-syn-I thymine dimer bends DNA by approximately 22 degrees and unwinds DNA by approximately 15 degrees. Chem Res Toxicol. 1993 Jul-Aug;6(4):519–523. doi: 10.1021/tx00034a020. [DOI] [PubMed] [Google Scholar]
  50. Yeh H. J., Sayer J. M., Liu X., Altieri A. S., Byrd R. A., Lakshman M. K., Yagi H., Schurter E. J., Gorenstein D. G., Jerina D. M. NMR solution structure of a nonanucleotide duplex with a dG mismatch opposite a 10S adduct derived from trans addition of a deoxyadenosine N6-amino group to (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene: an unusual syn glycosidic torsion angle at the modified dA. Biochemistry. 1995 Oct 17;34(41):13570–13581. doi: 10.1021/bi00041a037. [DOI] [PubMed] [Google Scholar]
  51. Zhao X., Liu J., Hsu D. S., Zhao S., Taylor J. S., Sancar A. Reaction mechanism of (6-4) photolyase. J Biol Chem. 1997 Dec 19;272(51):32580–32590. doi: 10.1074/jbc.272.51.32580. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES