Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 15;26(16):3813–3824. doi: 10.1093/nar/26.16.3813

An improved synthesis of oligodeoxynucleotide N3'-->P5' phosphoramidates and their chimera using hindered phosphoramidite monomers and a novel handle for reverse phase purification.

K L Fearon 1, B L Hirschbein 1, J S Nelson 1, M F Foy 1, M Q Nguyen 1, A Okruszek 1, S N McCurdy 1, J E Frediani 1, L A DeDionisio 1, A M Raible 1, E N Cagle 1, V Boyd 1
PMCID: PMC147773  PMID: 9685501

Abstract

Oligodeoxynucleotide N3'-->P5' phosphoramidates are promising candidates for antisense therapeutics, as well as for diagnostic applications. We recently reported a new method for the synthesis of these oligonucleotide analogs which makes use of a phosphoramidite amine-exchange reaction in the key coupling step. We report herein an improved set of monomers that utilize a more reactive, hindered phosphoramidite to produce optimal yields in a single coupling step followed by oxidation, thereby eliminating the need for the previously reported couple-oxidize-couple-oxidize approach. On the 10 micromol scale, the synthesis is performed using only 3.6 equivalents (equiv.) of monomer. An improved oxidation reagent consisting of hydrogen peroxide, water, pyridine and THF is also introduced. Reported here for the first time is the use of a reverse-phase purification methodology employing a ribonucleotide purification handle that is removed under non-acidic conditions, in contrast to the conventional dimethoxytrityl group. The synthesis and purification of uniformly modified N3'-->P5' phosphoramidate oligodeoxy-nucleotides, as well as their chimera containing phosphodiester and/or phosphorothioate linkages at predefined positions, using these new methodologies are included herein. The results of31P NMR studies that led to this improved amine-exchange methodology are also described.

Full Text

The Full Text of this article is available as a PDF (158.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann K. H., Fabbro D., Dean N. M., Geiger T., Monia B. P., Müller M., Nicklin P. Second-generation antisense oligonucleotides: structure-activity relationships and the design of improved signal-transduction inhibitors. Biochem Soc Trans. 1996 Aug;24(3):630–637. doi: 10.1042/bst0240630. [DOI] [PubMed] [Google Scholar]
  2. Chen J. K., Schultz R. G., Lloyd D. H., Gryaznov S. M. Synthesis of oligodeoxyribonucleotide N3'-->P5' phosphoramidates. Nucleic Acids Res. 1995 Jul 25;23(14):2661–2668. doi: 10.1093/nar/23.14.2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DeDionisio L., Gryaznov S. M. Analysis of a ribonuclease H digestion of N3'-->P5' phosphoramidate-RNA duplexes by capillary gel electrophoresis. J Chromatogr B Biomed Appl. 1995 Jul 7;669(1):125–131. doi: 10.1016/0378-4347(95)00153-a. [DOI] [PubMed] [Google Scholar]
  4. Escudé C., Giovannangeli C., Sun J. S., Lloyd D. H., Chen J. K., Gryaznov S. M., Garestier T., Hélène C. Stable triple helices formed by oligonucleotide N3'-->P5' phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4365–4369. doi: 10.1073/pnas.93.9.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fearon K. L., Hirschbein B. L., Chiu C. Y., Quijano M. R., Zon G. Phosphorothioate oligodeoxynucleotides: large-scale synthesis and analysis, impurity characterization, and the effects of phosphorus stereochemistry. Ciba Found Symp. 1997;209:19–37. doi: 10.1002/9780470515396.ch3. [DOI] [PubMed] [Google Scholar]
  6. Giovannangeli C., Diviacco S., Labrousse V., Gryaznov S., Charneau P., Helene C. Accessibility of nuclear DNA to triplex-forming oligonucleotides: the integrated HIV-1 provirus as a target. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):79–84. doi: 10.1073/pnas.94.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gryaznov S. M., Lloyd D. H., Chen J. K., Schultz R. G., DeDionisio L. A., Ratmeyer L., Wilson W. D. Oligonucleotide N3'-->P5' phosphoramidates. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5798–5802. doi: 10.1073/pnas.92.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gryaznov S., Skorski T., Cucco C., Nieborowska-Skorska M., Chiu C. Y., Lloyd D., Chen J. K., Koziolkiewicz M., Calabretta B. Oligonucleotide N3'-->P5' phosphoramidates as antisense agents. Nucleic Acids Res. 1996 Apr 15;24(8):1508–1514. doi: 10.1093/nar/24.8.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heidenreich O., Gryaznov S., Nerenberg M. RNase H-independent antisense activity of oligonucleotide N3 '--> P5 ' phosphoramidates. Nucleic Acids Res. 1997 Feb 15;25(4):776–780. doi: 10.1093/nar/25.4.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kibler-Herzog L., Zon G., Uznanski B., Whittier G., Wilson W. D. Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers. Nucleic Acids Res. 1991 Jun 11;19(11):2979–2986. doi: 10.1093/nar/19.11.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nelson Jeffrey S., Fearon Karen L., Nguyen Mark Q., McCurdy Sarah N., Frediani Jeff E., Foy Michael F., Hirschbein Bernard L. N3'-->P5' Oligodeoxyribonucleotide Phosphoramidates: A New Method of Synthesis Based on a Phosphoramidite Amine-Exchange Reaction. J Org Chem. 1997 Oct 17;62(21):7278–7287. doi: 10.1021/jo970801t. [DOI] [PubMed] [Google Scholar]
  12. Nelson P. S., Muthini S., Vierra M., Acosta L., Smith T. H. Rainbow Universal CPG: a versatile solid support for oligonucleotide synthesis. Biotechniques. 1997 Apr;22(4):752–756. doi: 10.2144/97224pf01. [DOI] [PubMed] [Google Scholar]
  13. Pon R. T., Usman N., Damha M. J., Ogilvie K. K. Prevention of guanine modification and chain cleavage during the solid phase synthesis of oligonucleotides using phosphoramidite derivatives. Nucleic Acids Res. 1986 Aug 26;14(16):6453–6470. doi: 10.1093/nar/14.16.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shibahara S., Mukai S., Nishihara T., Inoue H., Ohtsuka E., Morisawa H. Site-directed cleavage of RNA. Nucleic Acids Res. 1987 Jun 11;15(11):4403–4415. doi: 10.1093/nar/15.11.4403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Skorski T., Perrotti D., Nieborowska-Skorska M., Gryaznov S., Calabretta B. Antileukemia effect of c-myc N3'-->P5' phosphoramidate antisense oligonucleotides in vivo. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3966–3971. doi: 10.1073/pnas.94.8.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES