Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Aug 15;26(16):3651–3656. doi: 10.1093/nar/26.16.3651

Telomere analysis by fluorescence in situ hybridization and flow cytometry.

M Hultdin 1, E Grönlund 1, K Norrback 1, E Eriksson-Lindström 1, T Just 1, G Roos 1
PMCID: PMC147775  PMID: 9685479

Abstract

Determination of telomere length is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Fluorescence in situ hybridization (FISH) of telomere repeats has been used to calculate telomere length, a method called quantitative (Q)-FISH. We here present a quantitative flow cytometric approach, Q-FISHFCM, for evaluation of telomere length distribution in individual cells based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA)3probe and DNA staining with propidium iodide. A simple and rapid protocol with results within 30 h was developed giving high reproducibility. One important feature of the protocol was the use of an internal cell line control, giving an automatic compensation for potential differences in the hybridization steps. This protocol was tested successfully on cell lines and clinical samples from bone marrow, blood, lymph nodes and tonsils. A significant correlation was found between Southern blotting and Q-FISHFCMtelomere length values ( P = 0.002). The mean sub-telomeric DNA length of the tested cell lines and clinical samples was estimated to be 3.2 kbp. With the Q-FISHFCMmethod the fluorescence signal could be determined in different cell cycle phases, indicating that in human cells the vast majority of telomeric DNA is replicated early in S phase.

Full Text

The Full Text of this article is available as a PDF (92.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkesteijn G. J., Erpelinck S. L., Martens A. C., Hagenbeek A. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia. Cytometry. 1995 Apr 1;19(4):353–360. doi: 10.1002/cyto.990190410. [DOI] [PubMed] [Google Scholar]
  2. Azzalin C. M., Mucciolo E., Bertoni L., Giulotto E. Fluorescence in situ hybridization with a synthetic (T2AG3)n polynucleotide detects several intrachromosomal telomere-like repeats on human chromosomes. Cytogenet Cell Genet. 1997;78(2):112–115. doi: 10.1159/000134640. [DOI] [PubMed] [Google Scholar]
  3. Blasco M. A., Lee H. W., Hande M. P., Samper E., Lansdorp P. M., DePinho R. A., Greider C. W. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997 Oct 3;91(1):25–34. doi: 10.1016/s0092-8674(01)80006-4. [DOI] [PubMed] [Google Scholar]
  4. Bodnar A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B., Harley C. B., Shay J. W., Lichtsteiner S., Wright W. E. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998 Jan 16;279(5349):349–352. doi: 10.1126/science.279.5349.349. [DOI] [PubMed] [Google Scholar]
  5. Bryan T. M., Englezou A., Dalla-Pozza L., Dunham M. A., Reddel R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997 Nov;3(11):1271–1274. doi: 10.1038/nm1197-1271. [DOI] [PubMed] [Google Scholar]
  6. Bryan T. M., Englezou A., Dunham M. A., Reddel R. R. Telomere length dynamics in telomerase-positive immortal human cell populations. Exp Cell Res. 1998 Mar 15;239(2):370–378. doi: 10.1006/excr.1997.3907. [DOI] [PubMed] [Google Scholar]
  7. Counter C. M., Hirte H. W., Bacchetti S., Harley C. B. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2900–2904. doi: 10.1073/pnas.91.8.2900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harley C. B., Futcher A. B., Greider C. W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990 May 31;345(6274):458–460. doi: 10.1038/345458a0. [DOI] [PubMed] [Google Scholar]
  9. Hastie N. D., Dempster M., Dunlop M. G., Thompson A. M., Green D. K., Allshire R. C. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990 Aug 30;346(6287):866–868. doi: 10.1038/346866a0. [DOI] [PubMed] [Google Scholar]
  10. Kwak T., Nishizaki T., Ito H., Kimura Y., Murakami T., Sasaki K. Flow-cytometric quantification in human gliomas of alpha satellite DNA sequences specific for chromosome 7 using fluorescence in situ hybridization. Cytometry. 1994 Sep 1;17(1):26–32. doi: 10.1002/cyto.990170104. [DOI] [PubMed] [Google Scholar]
  11. Lansdorp P. M., Verwoerd N. P., van de Rijke F. M., Dragowska V., Little M. T., Dirks R. W., Raap A. K., Tanke H. J. Heterogeneity in telomere length of human chromosomes. Hum Mol Genet. 1996 May;5(5):685–691. doi: 10.1093/hmg/5.5.685. [DOI] [PubMed] [Google Scholar]
  12. Mandahl N., Baldetorp B., Fernö M., Akerman M., Rydholm A., Heim S., Willén H., Killander D., Mitelman F. Comparative cytogenetic and DNA flow cytometric analysis of 150 bone and soft-tissue tumors. Int J Cancer. 1993 Feb 1;53(3):358–364. doi: 10.1002/ijc.2910530303. [DOI] [PubMed] [Google Scholar]
  13. Martens U. M., Zijlmans J. M., Poon S. S., Dragowska W., Yui J., Chavez E. A., Ward R. K., Lansdorp P. M. Short telomeres on human chromosome 17p. Nat Genet. 1998 Jan;18(1):76–80. doi: 10.1038/ng0198-018. [DOI] [PubMed] [Google Scholar]
  14. Mehle C., Ljungberg B., Roos G. Telomere shortening in renal cell carcinoma. Cancer Res. 1994 Jan 1;54(1):236–241. [PubMed] [Google Scholar]
  15. Meyne J., Baker R. J., Hobart H. H., Hsu T. C., Ryder O. A., Ward O. G., Wiley J. E., Wurster-Hill D. H., Yates T. L., Moyzis R. K. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990 Apr;99(1):3–10. doi: 10.1007/BF01737283. [DOI] [PubMed] [Google Scholar]
  16. Nilsson P., Mehle C., Remes K., Roos G. Telomerase activity in vivo in human malignant hematopoietic cells. Oncogene. 1994 Oct;9(10):3043–3048. [PubMed] [Google Scholar]
  17. Raghuraman M. K., Brewer B. J., Fangman W. L. Cell cycle-dependent establishment of a late replication program. Science. 1997 May 2;276(5313):806–809. doi: 10.1126/science.276.5313.806. [DOI] [PubMed] [Google Scholar]
  18. Rapi S., Caldini A., Fanelli A., Berti P., Lisi E., Anichini E., Caligiani R., Sbernini F., Taddei G., Amorosi A. Flow cytometric measurement of DNA content in human solid tumors: a comparison with cytogenetics. Cytometry. 1996 Sep 15;26(3):192–197. doi: 10.1002/(SICI)1097-0320(19960915)26:3<192::AID-CYTO2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  19. Shay J. W., Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997 Apr;33(5):787–791. doi: 10.1016/S0959-8049(97)00062-2. [DOI] [PubMed] [Google Scholar]
  20. Ten Hagen K. G., Gilbert D. M., Willard H. F., Cohen S. N. Replication timing of DNA sequences associated with human centromeres and telomeres. Mol Cell Biol. 1990 Dec;10(12):6348–6355. doi: 10.1128/mcb.10.12.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Trask B., van den Engh G., Landegent J., in de Wal N. J., van der Ploeg M. Detection of DNA sequences in nuclei in suspension by in situ hybridization and dual beam flow cytometry. Science. 1985 Dec 20;230(4732):1401–1403. doi: 10.1126/science.2416058. [DOI] [PubMed] [Google Scholar]
  22. Vaziri H., Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998 Feb 26;8(5):279–282. doi: 10.1016/s0960-9822(98)70109-5. [DOI] [PubMed] [Google Scholar]
  23. Vindeløv L. L., Christensen I. J., Nissen N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983 Mar;3(5):323–327. doi: 10.1002/cyto.990030503. [DOI] [PubMed] [Google Scholar]
  24. Weber B., Allen L., Magenis R. E., Goodfellow P. J., Smith L., Hayden M. R. Intrachromosomal location of the telomeric repeat (TTAGGG)n. Mamm Genome. 1991;1(4):211–216. doi: 10.1007/BF00352327. [DOI] [PubMed] [Google Scholar]
  25. Wells R. A., Germino G. G., Krishna S., Buckle V. J., Reeders S. T. Telomere-related sequences at interstitial sites in the human genome. Genomics. 1990 Dec;8(4):699–704. doi: 10.1016/0888-7543(90)90257-u. [DOI] [PubMed] [Google Scholar]
  26. Zijlmans J. M., Martens U. M., Poon S. S., Raap A. K., Tanke H. J., Ward R. K., Lansdorp P. M. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7423–7428. doi: 10.1073/pnas.94.14.7423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van Dekken H., Arkesteijn G. J., Visser J. W., Bauman J. G. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei. Cytometry. 1990;11(1):153–164. doi: 10.1002/cyto.990110118. [DOI] [PubMed] [Google Scholar]
  28. van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997 Feb 20;385(6618):740–743. doi: 10.1038/385740a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES