Abstract
The structure and physical properties of 2'-sugar substituted O -(2-methoxyethyl) (MOE) nucleic acids have been studied using molecular dynamics simulations. Nanosecond simulations on the duplex MOE[CCAACGTTGG]-r[CCAACGUUGG] in aqueous solution have been carried out using the particle mesh Ewald method. Parameters for the simulation have been developed from ab initio calculations on dimethoxyethyl fragments in a manner consistent with the AMBER 4.1 force field database. The simulated duplex is compared with the crystal structure of the self-complementary duplex d[GCGTATMOEACGC]2, which contains a single modification in each strand. Structural details from each sequence have been analyzed to rationalize the stability imparted by substitution with 2'- O -(2-methoxyethyl) side chains. Both duplexes have an A-form structure, as indicated by several parameters, most notably a C3' endo sugar pucker in all residues. The simulated structure maintains a stable A-form geometry throughout the duration of the simulation with an average RMS deviation of 2.0 A from the starting A-form structure. The presence of the 2' substitution appears to lock the sugars in the C3' endo conformation, causing the duplex to adopt a stable A-form geometry. The side chains themselves have a fairly rigid geometry with trans , trans , gauche +/- and trans rotations about the C2'-O2', O2'-CA', CA'-CB' and CB'-OC' bonds respectively.
Full Text
The Full Text of this article is available as a PDF (145.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker B. F., Lot S. S., Condon T. P., Cheng-Flournoy S., Lesnik E. A., Sasmor H. M., Bennett C. F. 2'-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem. 1997 May 2;272(18):11994–12000. doi: 10.1074/jbc.272.18.11994. [DOI] [PubMed] [Google Scholar]
- Ban C., Ramakrishnan B., Sundaralingam M. A single 2'-hydroxyl group converts B-DNA to A-DNA. Crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G-C base-paired quadruplet. J Mol Biol. 1994 Feb 11;236(1):275–285. doi: 10.1006/jmbi.1994.1134. [DOI] [PubMed] [Google Scholar]
- Conte M. R., Conn G. L., Brown T., Lane A. N. Conformational properties and thermodynamics of the RNA duplex r(CGCAAAUUUGCG)2: comparison with the DNA analogue d(CGCAAATTTGCG)2. Nucleic Acids Res. 1997 Jul 1;25(13):2627–2634. doi: 10.1093/nar/25.13.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crooke S. T. Progress in antisense therapeutics. Med Res Rev. 1996 Jul;16(4):319–344. doi: 10.1002/(SICI)1098-1128(199607)16:4<319::AID-MED2>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Egli M., Portmann S., Usman N. RNA hydration: a detailed look. Biochemistry. 1996 Jul 2;35(26):8489–8494. doi: 10.1021/bi9607214. [DOI] [PubMed] [Google Scholar]
- Egli M., Usman N., Rich A. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes. Biochemistry. 1993 Apr 6;32(13):3221–3237. [PubMed] [Google Scholar]
- Fedoroff OYu, Salazar M., Reid B. R. Structure of a DNA:RNA hybrid duplex. Why RNase H does not cleave pure RNA. J Mol Biol. 1993 Oct 5;233(3):509–523. doi: 10.1006/jmbi.1993.1528. [DOI] [PubMed] [Google Scholar]
- Freier S. M., Altmann K. H. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 1997 Nov 15;25(22):4429–4443. doi: 10.1093/nar/25.22.4429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González C., Stec W., Reynolds M. A., James T. L. Structure and dynamics of a DNA.RNA hybrid duplex with a chiral phosphorothioate moiety: NMR and molecular dynamics with conventional and time-averaged restraints. Biochemistry. 1995 Apr 18;34(15):4969–4982. doi: 10.1021/bi00015a008. [DOI] [PubMed] [Google Scholar]
- Horton N. C., Finzel B. C. The structure of an RNA/DNA hybrid: a substrate of the ribonuclease activity of HIV-1 reverse transcriptase. J Mol Biol. 1996 Dec 6;264(3):521–533. doi: 10.1006/jmbi.1996.0658. [DOI] [PubMed] [Google Scholar]
- Lane A. N., Ebel S., Brown T. NMR assignments and solution conformation of the DNA.RNA hybrid duplex d(GTGAACTT).r(AAGUUCAC). Eur J Biochem. 1993 Jul 15;215(2):297–306. doi: 10.1111/j.1432-1033.1993.tb18035.x. [DOI] [PubMed] [Google Scholar]
- Lesnik E. A., Freier S. M. Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry. 1995 Aug 29;34(34):10807–10815. doi: 10.1021/bi00034a013. [DOI] [PubMed] [Google Scholar]
- Lesnik E. A., Guinosso C. J., Kawasaki A. M., Sasmor H., Zounes M., Cummins L. L., Ecker D. J., Cook P. D., Freier S. M. Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry. 1993 Aug 3;32(30):7832–7838. doi: 10.1021/bi00081a031. [DOI] [PubMed] [Google Scholar]
- Searle M. S., Williams D. H. On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic Acids Res. 1993 May 11;21(9):2051–2056. doi: 10.1093/nar/21.9.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]