Abstract
A new sequence-specific RNase was isolated from human colon carcinoma T84 cells. The enzyme was purified to electrophoretical homogeneity by pH precipitation, HiTrapSP and Superdex 200 FPLC. The molecular weight of the new enzyme, which we have named RNase T84, is 19 kDa. RNase T84 is an endonuclease which generates 5'-phosphate-terminated products. The new RNase selectively cleaved the phosphodiester bonds at AU or GU steps at the 3' side of A or G and the 5' side of U. 5'AU3' or 5'GU3' is the minimal sequence required for T84 RNase activity, but the rate of cleavage depends on the sequence and/or structure context. Synthetic ribohomopolymers such as poly(A), poly(G), poly(U) and poly(C) were very poorly hydrolysed by T84 enzyme. In contrast, poly(I) and heteroribopolymers poly(A,U) and poly(A,G,U) were good substrates for the new RNase. The activity towards poly(I) was stronger in two colon carcinoma cell lines than in three other epithelial cell lines. Our results show that RNase T84 is a new sequence-specific enzyme whose gene is abundantly expressed in human colon carcinoma cell lines.
Full Text
The Full Text of this article is available as a PDF (273.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. B., Planchon S. M., Roche J. K. IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding. J Immunol. 1993 Mar 15;150(6):2356–2363. [PubMed] [Google Scholar]
- Ardelt W., Mikulski S. M., Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem. 1991 Jan 5;266(1):245–251. [PubMed] [Google Scholar]
- Beintema J. J., Hofsteenge J., Iwama M., Morita T., Ohgi K., Irie M., Sugiyama R. H., Schieven G. L., Dekker C. A., Glitz D. G. Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry. 1988 Jun 14;27(12):4530–4538. doi: 10.1021/bi00412a046. [DOI] [PubMed] [Google Scholar]
- Berkner K. L., Folk W. R. Polynucleotide kinase exchange reaction: quantitave assay for restriction endonuclease-generated 5'-phosphoroyl termini in DNA. J Biol Chem. 1977 May 25;252(10):3176–3184. [PubMed] [Google Scholar]
- Besançon F., Przewlocki G., Baró I., Hongre A. S., Escande D., Edelman A. Interferon-gamma downregulates CFTR gene expression in epithelial cells. Am J Physiol. 1994 Nov;267(5 Pt 1):C1398–C1404. doi: 10.1152/ajpcell.1994.267.5.C1398. [DOI] [PubMed] [Google Scholar]
- Blank A., Sugiyama R. H., Dekker C. A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem. 1982 Mar 1;120(2):267–275. doi: 10.1016/0003-2697(82)90347-5. [DOI] [PubMed] [Google Scholar]
- Bravo J., Fernández E., Ribó M., de Llorens R., Cuchillo C. M. A versatile negative-staining ribonuclease zymogram. Anal Biochem. 1994 May 15;219(1):82–86. doi: 10.1006/abio.1994.1234. [DOI] [PubMed] [Google Scholar]
- Cozens A. L., Yezzi M. J., Chin L., Simon E. M., Finkbeiner W. E., Wagner J. A., Gruenert D. C. Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5171–5175. doi: 10.1073/pnas.89.11.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P. The metabolic role of RNases. Trends Biochem Sci. 1988 Apr;13(4):136–139. doi: 10.1016/0968-0004(88)90070-9. [DOI] [PubMed] [Google Scholar]
- Fett J. W., Strydom D. J., Lobb R. R., Alderman E. M., Bethune J. L., Riordan J. F., Vallee B. L. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985 Sep 24;24(20):5480–5486. doi: 10.1021/bi00341a030. [DOI] [PubMed] [Google Scholar]
- Floyd-Smith G., Slattery E., Lengyel P. Interferon action: RNA cleavage pattern of a (2'-5')oligoadenylate--dependent endonuclease. Science. 1981 May 29;212(4498):1030–1032. doi: 10.1126/science.6165080. [DOI] [PubMed] [Google Scholar]
- Gleich G. J., Loegering D. A., Bell M. P., Checkel J. L., Ackerman S. J., McKean D. J. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A. 1986 May;83(10):3146–3150. doi: 10.1073/pnas.83.10.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irie M. Enzymatic depolymerization of synthetic polynucleotides, poly A, poly C and poly U by ribonuclease T1 preparations. J Biochem. 1965 Dec;58(6):599–603. doi: 10.1093/oxfordjournals.jbchem.a128249. [DOI] [PubMed] [Google Scholar]
- Keith G., Dirheimer G. Evidence for the existence of an expressed minor variant tRNAPhe in yeast. Biochem Biophys Res Commun. 1987 Jan 15;142(1):183–187. doi: 10.1016/0006-291x(87)90468-2. [DOI] [PubMed] [Google Scholar]
- Keith G., Pixa G., Fix C., Dirheimer G. Primary structure of three tRNAs from brewer's yeast: tRNAPro2, tRNAHis1 and tRNAHis2. Biochimie. 1983 Nov-Dec;65(11-12):661–672. doi: 10.1016/s0300-9084(84)80030-9. [DOI] [PubMed] [Google Scholar]
- Kim J. S., Soucek J., Matousek J., Raines R. T. Mechanism of ribonuclease cytotoxicity. J Biol Chem. 1995 Dec 29;270(52):31097–31102. doi: 10.1074/jbc.270.52.31097. [DOI] [PubMed] [Google Scholar]
- Laval J., Paoletti C. Mechanism of deoxyribonucleic acid degradation by an acid deoxyribonuclease from the snail Helix aspersa Müll. Biochemistry. 1972 Sep 12;11(19):3604–3610. doi: 10.1021/bi00769a017. [DOI] [PubMed] [Google Scholar]
- Lengyel P. Biochemistry of interferons and their actions. Annu Rev Biochem. 1982;51:251–282. doi: 10.1146/annurev.bi.51.070182.001343. [DOI] [PubMed] [Google Scholar]
- Maor D., Mardiney M. R., Jr Alteration of human serum ribonuclease activity in malignancy. CRC Crit Rev Clin Lab Sci. 1978;10(1):89–111. doi: 10.3109/10408367909149733. [DOI] [PubMed] [Google Scholar]
- McClure B. A., Haring V., Ebert P. R., Anderson M. A., Simpson R. J., Sakiyama F., Clarke A. E. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature. 1989 Dec 21;342(6252):955–957. doi: 10.1038/342955a0. [DOI] [PubMed] [Google Scholar]
- Minks M. A., Benvin S., Maroney P. A., Baglioni C. Synthesis of 2'5'-oligo(A) in extracts of interferon-treated HeLa cells. J Biol Chem. 1979 Jun 25;254(12):5058–5064. [PubMed] [Google Scholar]
- Morita T., Niwata Y., Ohgi K., Ogawa M., Irie M. Distribution of two urinary ribonuclease-like enzymes in human organs and body fluids. J Biochem. 1986 Jan;99(1):17–25. doi: 10.1093/oxfordjournals.jbchem.a135456. [DOI] [PubMed] [Google Scholar]
- Neuwelt E. A., Frank J. J., Levy C. C. Purification of human spleen ribonuclease by immunoabsorption. Similarity of the enzyme with human liver ribonuclease. J Biol Chem. 1976 Sep 25;251(18):5752–5758. [PubMed] [Google Scholar]
- Raines R. T., Toscano M. P., Nierengarten D. M., Ha J. H., Auerbach R. Replacing a surface loop endows ribonuclease A with angiogenic activity. J Biol Chem. 1995 Jul 21;270(29):17180–17184. doi: 10.1074/jbc.270.29.17180. [DOI] [PubMed] [Google Scholar]
- Scadden A. D., Smith C. W. A ribonuclease specific for inosine-containing RNA: a potential role in antiviral defence? EMBO J. 1997 Apr 15;16(8):2140–2149. doi: 10.1093/emboj/16.8.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoumacher R. A., Ram J., Iannuzzi M. C., Bradbury N. A., Wallace R. W., Hon C. T., Kelly D. R., Schmid S. M., Gelder F. B., Rado T. A. A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci U S A. 1990 May;87(10):4012–4016. doi: 10.1073/pnas.87.10.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro R., Fett J. W., Strydom D. J., Vallee B. L. Isolation and characterization of a human colon carcinoma-secreted enzyme with pancreatic ribonuclease-like activity. Biochemistry. 1986 Nov 18;25(23):7255–7264. doi: 10.1021/bi00371a002. [DOI] [PubMed] [Google Scholar]
- Sierakowska H., Shugar D. Mammalian nucleolytic enzymes. Prog Nucleic Acid Res Mol Biol. 1977;20:59–130. doi: 10.1016/s0079-6603(08)60470-5. [DOI] [PubMed] [Google Scholar]
- Sorrentino S., Libonati M. Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types. FEBS Lett. 1997 Mar 3;404(1):1–5. doi: 10.1016/s0014-5793(97)00086-0. [DOI] [PubMed] [Google Scholar]
- Taylor C. B., Bariola P. A., delCardayré S. B., Raines R. T., Green P. J. RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5118–5122. doi: 10.1073/pnas.90.11.5118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchida T., Arima T., Egami F. Specificity of RNase U2. J Biochem. 1970 Jan;67(1):91–102. doi: 10.1093/oxfordjournals.jbchem.a129239. [DOI] [PubMed] [Google Scholar]
- Weber L. A., Feman E. R., Baglioni C. A cell free system from HeLa cells active in initiation of protein synthesis. Biochemistry. 1975 Dec 2;14(24):5315–5321. doi: 10.1021/bi00695a015. [DOI] [PubMed] [Google Scholar]
- van Belzen N., Diesveld M. P., van der Made A. C., Nozawa Y., Dinjens W. N., Vlietstra R., Trapman J., Bosman F. T. Identification of mRNAs that show modulated expression during colon carcinoma cell differentiation. Eur J Biochem. 1995 Dec 15;234(3):843–848. doi: 10.1111/j.1432-1033.1995.843_a.x. [DOI] [PubMed] [Google Scholar]