Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 1;26(17):4078–4085. doi: 10.1093/nar/26.17.4078

NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases.

K Usdin 1
PMCID: PMC147794  PMID: 9705522

Abstract

Tandem repeats of certain trinucleotides show extensive intergenerational instability in humans that is associated with a class of genetic disorders known as the Triplet Expansion Diseases. This instability is thought to be a consequence of the formation of intrastrand structures, including hairpins, triplexes and tetraplexes, by the tandem repeats. I show here that CGG-repeats which are associated with this group of diseases, and AGG- and TGG-repeats which are not currently known to be, form several intrastrand structures including tetraplexes. In all cases the tetraplexes have the same overall conformation in which all the G residues are involved in G4-tetrads. CGG-repeats also form stable hairpins, but AGG- and TGG-repeats do not form hairpins of comparable stability. However, since tetraplexes can be thought of as folded hairpins, many of the properties ascribed to disease-associated triplets that form hairpins, may apply to these sequences as well. The fact that AGG- and TGG-repeats are not currently associated with any triplet expansion disease suggests either that the ability to adopt an intrastrand folded structure is not sufficient for expansion, or that other diseases associated with such triplets might remain to be identified.

Full Text

The Full Text of this article is available as a PDF (391.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. T., Jr, Warren S. T. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995;29:703–728. doi: 10.1146/annurev.ge.29.120195.003415. [DOI] [PubMed] [Google Scholar]
  2. Balagurumoorthy P., Brahmachari S. K., Mohanty D., Bansal M., Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 1992 Aug 11;20(15):4061–4067. doi: 10.1093/nar/20.15.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  4. Beal P. A., Dervan P. B. The influence of single base triplet changes on the stability of a pur.pur.pyr triple helix determined by affinity cleaving. Nucleic Acids Res. 1992 Jun 11;20(11):2773–2776. doi: 10.1093/nar/20.11.2773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caskey C. T., Pizzuti A., Fu Y. H., Fenwick R. G., Jr, Nelson D. L. Triplet repeat mutations in human disease. Science. 1992 May 8;256(5058):784–789. doi: 10.1126/science.1589758. [DOI] [PubMed] [Google Scholar]
  6. Chen X., Mariappan S. V., Catasti P., Ratliff R., Moyzis R. K., Laayoun A., Smith S. S., Bradbury E. M., Gupta G. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5199–5203. doi: 10.1073/pnas.92.11.5199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fry M., Loeb L. A. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4950–4954. doi: 10.1073/pnas.91.11.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
  9. Hanvey J. C., Shimizu M., Wells R. D. Intramolecular DNA triplexes in supercoiled plasmids. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6292–6296. doi: 10.1073/pnas.85.17.6292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lapidot A., Baran N., Manor H. (dT-dC)n and (dG-dA)n tracts arrest single stranded DNA replication in vitro. Nucleic Acids Res. 1989 Feb 11;17(3):883–900. doi: 10.1093/nar/17.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leonard N. J., McDonald J. J., Henderson R. E., Reichmann M. E. Reaction of diethyl pyrocarbonate with nucleic acid components. Adenosine. Biochemistry. 1971 Aug 31;10(18):3335–3342. doi: 10.1021/bi00794a003. [DOI] [PubMed] [Google Scholar]
  12. Mariappan S. V., Catasti P., Chen X., Ratliff R., Moyzis R. K., Bradbury E. M., Gupta G. Solution structures of the individual single strands of the fragile X DNA triplets (GCC)n.(GGC)n. Nucleic Acids Res. 1996 Feb 15;24(4):784–792. doi: 10.1093/nar/24.4.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mariappan S. V., Garcoa A. E., Gupta G. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic Acids Res. 1996 Feb 15;24(4):775–783. doi: 10.1093/nar/24.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  15. Mitas M., Yu A., Dill J., Haworth I. S. The trinucleotide repeat sequence d(CGG)15 forms a heat-stable hairpin containing Gsyn. Ganti base pairs. Biochemistry. 1995 Oct 3;34(39):12803–12811. doi: 10.1021/bi00039a041. [DOI] [PubMed] [Google Scholar]
  16. Mitas M., Yu A., Dill J., Kamp T. J., Chambers E. J., Haworth I. S. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res. 1995 Mar 25;23(6):1050–1059. doi: 10.1093/nar/23.6.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mitchell J. E., Newbury S. F., McClellan J. A. Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to fragile X and related human genetic diseases. Nucleic Acids Res. 1995 Jun 11;23(11):1876–1881. doi: 10.1093/nar/23.11.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murchie A. I., Lilley D. M. Tetraplex folding of telomere sequences and the inclusion of adenine bases. EMBO J. 1994 Feb 15;13(4):993–1001. doi: 10.1002/j.1460-2075.1994.tb06344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Panyutin I. G., Kovalsky O. I., Budowsky E. I., Dickerson R. E., Rikhirev M. E., Lipanov A. A. G-DNA: a twice-folded DNA structure adopted by single-stranded oligo(dG) and its implications for telomeres. Proc Natl Acad Sci U S A. 1990 Feb;87(3):867–870. doi: 10.1073/pnas.87.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sasse-Dwight S., Gralla J. D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J Biol Chem. 1989 May 15;264(14):8074–8081. [PubMed] [Google Scholar]
  21. Seela F., Berg H., Rosemeyer H. Bending of oligonucleotides containing an isosteric nucleobase: 7-deaza-2'-deoxyadenosine replacing dA within d(A)6 tracts. Biochemistry. 1989 Jul 25;28(15):6193–6198. doi: 10.1021/bi00441a010. [DOI] [PubMed] [Google Scholar]
  22. Sen D., Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988 Jul 28;334(6180):364–366. doi: 10.1038/334364a0. [DOI] [PubMed] [Google Scholar]
  23. Sinden R. R., Wells R. D. DNA structure, mutations, and human genetic disease. Curr Opin Biotechnol. 1992 Dec;3(6):612–622. doi: 10.1016/0958-1669(92)90005-4. [DOI] [PubMed] [Google Scholar]
  24. Usdin K., Woodford K. J. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res. 1995 Oct 25;23(20):4202–4209. doi: 10.1093/nar/23.20.4202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weitzmann M. N., Woodford K. J., Usdin K. DNA secondary structures and the evolution of hypervariable tandem arrays. J Biol Chem. 1997 Apr 4;272(14):9517–9523. doi: 10.1074/jbc.272.14.9517. [DOI] [PubMed] [Google Scholar]
  26. Weitzmann M. N., Woodford K. J., Usdin K. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J Biol Chem. 1996 Aug 23;271(34):20958–20964. doi: 10.1074/jbc.271.34.20958. [DOI] [PubMed] [Google Scholar]
  27. Woodford K. J., Howell R. M., Usdin K. A novel K(+)-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes. J Biol Chem. 1994 Oct 28;269(43):27029–27035. [PubMed] [Google Scholar]
  28. Yu A., Dill J., Mitas M. The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins. Nucleic Acids Res. 1995 Oct 25;23(20):4055–4057. doi: 10.1093/nar/23.20.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yu A., Dill J., Wirth S. S., Huang G., Lee V. H., Haworth I. S., Mitas M. The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation. Nucleic Acids Res. 1995 Jul 25;23(14):2706–2714. doi: 10.1093/nar/23.14.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zahler A. M., Williamson J. R., Cech T. R., Prescott D. M. Inhibition of telomerase by G-quartet DNA structures. Nature. 1991 Apr 25;350(6320):718–720. doi: 10.1038/350718a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES