Abstract
A method is presented in which the reduced complexity and non-stoichiometric amplification intrinsic to RNA arbitrarily primed PCR fingerprinting (RAP-PCR) is used to advantage to generate probes for differential screening of cDNA arrays. RAP-PCR fingerprints were converted to probes for human cDNA clones arrayed as Escherichia coli colonies on nylon membranes. Each array contained 18 432 cDNA clones from the IMAGE consortium. Hybridization to approximately 1000 cDNA clones was detected using each RAP-PCR probe. Different RAP-PCR fingerprints gave hybridization patterns having very little overlap (<3%) with each other or with hybridization patterns from total cDNA probes. Consequently, repeated application of RAP-PCR probes allows a greater fraction of the message population to be screened on this type of array than can be achieved with a radiolabeled total cDNA probe. This method was applied to RNA from HaCaT keratinocytes treated with epidermal growth factor. Two RAP-PCR probes detected hybridization to 2000 clones, from which 22 candidate differentially expressed genes were observed. Differential expression was tested for 15 of these clones using RT-PCR and 13 were confirmed. The use of this cDNA array to analyze RAP-PCR fingerprints allowed for an increase in detection of 10-20-fold over the conventional denaturing polyacrylamide gel approach to RAP-PCR or differential display. Throughput is vastly improved by the reduction in cloning and sequencing afforded by the use of arrays. Also, repeated cloning and sequencing of the same gene or of genes already known to be regulated in the system of interest is minimized. The procedure we describe uses inexpensive arrays of plasmid clones spotted as E.coli colonies to detect differential expression, but these reduced complexity probes should also prove useful on arrays of PCR-amplified fragments and on oligonucleotide chips. Genesobserved in this manuscript: H11520, U35048, R48633, H28735, M13918, H12999, H05639, X79781, M31627, H23972, AB000712, R75916, U66894, AF067817.
Full Text
The Full Text of this article is available as a PDF (148.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachem C. W., van der Hoeven R. S., de Bruijn S. M., Vreugdenhil D., Zabeau M., Visser R. G. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 1996 May;9(5):745–753. doi: 10.1046/j.1365-313x.1996.9050745.x. [DOI] [PubMed] [Google Scholar]
- Boll W., Fujisawa J., Niemi J., Weissmann C. A new approach to high sensitivity differential hybridization. Gene. 1986;50(1-3):41–53. doi: 10.1016/0378-1119(86)90308-2. [DOI] [PubMed] [Google Scholar]
- Boukamp P., Popp S., Altmeyer S., Hülsen A., Fasching C., Cremer T., Fusenig N. E. Sustained nontumorigenic phenotype correlates with a largely stable chromosome content during long-term culture of the human keratinocyte line HaCaT. Genes Chromosomes Cancer. 1997 Aug;19(4):201–214. doi: 10.1002/(sici)1098-2264(199708)19:4<201::aid-gcc1>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
- Bustelo X. R. The VAV family of signal transduction molecules. Crit Rev Oncog. 1996;7(1-2):65–88. doi: 10.1615/critrevoncog.v7.i1-2.50. [DOI] [PubMed] [Google Scholar]
- Dittmar G., Schmidt G., Kopun M., Werner D. Mapping of G2/M-phase prevalences of chaperon-encoding transcripts by means of a sensitive differential hybridization approach. Cell Biol Int. 1997 Jun;21(6):383–391. doi: 10.1006/cbir.1997.0158. [DOI] [PubMed] [Google Scholar]
- Dmitrenko V. V., Garifulin O. M., Shostak E. A., Smikodub A. I., Kavsan V. M. Kharakteristika razlichnykh tipov mRNK, ékspressiruiushchikhsia v golovnom mozge cheloveka. Tsitol Genet. 1996 Sep-Oct;30(5):41–47. [PubMed] [Google Scholar]
- Habu Y., Fukada-Tanaka S., Hisatomi Y., Iida S. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem Biophys Res Commun. 1997 May 19;234(2):516–521. doi: 10.1006/bbrc.1997.6666. [DOI] [PubMed] [Google Scholar]
- Jay P., Ji J. W., Marsollier C., Taviaux S., Bergé-Lefranc J. L., Berta P. Cloning of the human homologue of the TGF beta-stimulated clone 22 gene. Biochem Biophys Res Commun. 1996 May 24;222(3):821–826. doi: 10.1006/bbrc.1996.0825. [DOI] [PubMed] [Google Scholar]
- Jin H., Cheng X., Diatchenko L., Siebert P. D., Huang C. C. Differential screening of a subtracted cDNA library: a method to search for genes preferentially expressed in multiple tissues. Biotechniques. 1997 Dec;23(6):1084–1086. doi: 10.2144/97236st05. [DOI] [PubMed] [Google Scholar]
- Katzav S., Martin-Zanca D., Barbacid M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 1989 Aug;8(8):2283–2290. doi: 10.1002/j.1460-2075.1989.tb08354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katzav S. Vav: Captain Hook for signal transduction? Crit Rev Oncog. 1995;6(2):87–97. [PubMed] [Google Scholar]
- Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
- Marshall A., Hodgson J. DNA chips: an array of possibilities. Nat Biotechnol. 1998 Jan;16(1):27–31. doi: 10.1038/nbt0198-27. [DOI] [PubMed] [Google Scholar]
- Mathieu-Daudé F., Welsh J., Davis C., McClelland M. Differentially expressed genes in the Trypanosoma brucei life cycle identified by RNA fingerprinting. Mol Biochem Parasitol. 1998 Apr 1;92(1):15–28. doi: 10.1016/s0166-6851(97)00221-1. [DOI] [PubMed] [Google Scholar]
- Mathieu-Daudé F., Welsh J., Vogt T., McClelland M. DNA rehybridization during PCR: the 'Cot effect' and its consequences. Nucleic Acids Res. 1996 Jun 1;24(11):2080–2086. doi: 10.1093/nar/24.11.2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClelland M., Ralph D., Cheng R., Welsh J. Interactions among regulators of RNA abundance characterized using RNA fingerprinting by arbitrarily primed PCR. Nucleic Acids Res. 1994 Oct 25;22(21):4419–4431. doi: 10.1093/nar/22.21.4419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Money T., Reader S., Qu L. J., Dunford R. P., Moore G. AFLP-based mRNA fingerprinting. Nucleic Acids Res. 1996 Jul 1;24(13):2616–2617. doi: 10.1093/nar/24.13.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta S., Shimekake Y., Nagata K. Molecular cloning and characterization of a transcription factor for the C-type natriuretic peptide gene promoter. Eur J Biochem. 1996 Dec 15;242(3):460–466. doi: 10.1111/j.1432-1033.1996.460rr.x. [DOI] [PubMed] [Google Scholar]
- Pesole G., Liuni S., Grillo G., Belichard P., Trenkle T., Welsh J., McClelland M. GeneUp: a program to select short PCR primer pairs that occur in multiple members of sequence lists. Biotechniques. 1998 Jul;25(1):112-7, 120-3. doi: 10.2144/98251bc02. [DOI] [PubMed] [Google Scholar]
- Piétu G., Alibert O., Guichard V., Lamy B., Bois F., Leroy E., Mariage-Sampson R., Houlgatte R., Soularue P., Auffray C. Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Res. 1996 Jun;6(6):492–503. doi: 10.1101/gr.6.6.492. [DOI] [PubMed] [Google Scholar]
- Ramsay G. DNA chips: state-of-the art. Nat Biotechnol. 1998 Jan;16(1):40–44. doi: 10.1038/nbt0198-40. [DOI] [PubMed] [Google Scholar]
- Rhyner T. A., Biguet N. F., Berrard S., Borbély A. A., Mallet J. An efficient approach for the selective isolation of specific transcripts from complex brain mRNA populations. J Neurosci Res. 1986;16(1):167–181. doi: 10.1002/jnr.490160116. [DOI] [PubMed] [Google Scholar]
- Romero F., Fischer S. Structure and function of vav. Cell Signal. 1996 Dec;8(8):545–553. doi: 10.1016/s0898-6568(96)00118-0. [DOI] [PubMed] [Google Scholar]
- Schuler G. D. Pieces of the puzzle: expressed sequence tags and the catalog of human genes. J Mol Med (Berl) 1997 Oct;75(10):694–698. doi: 10.1007/s001090050155. [DOI] [PubMed] [Google Scholar]
- Shworak N. W., Liu J., Fritze L. M., Schwartz J. J., Zhang L., Logeart D., Rosenberg R. D. Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem. 1997 Oct 31;272(44):28008–28019. doi: 10.1074/jbc.272.44.28008. [DOI] [PubMed] [Google Scholar]
- Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 1992 Oct 11;20(19):4965–4970. doi: 10.1093/nar/20.19.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]