Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 1;26(17):3991–3997. doi: 10.1093/nar/26.17.3991

Pseudouridine and ribothymidine formation in the tRNA-like domain of turnip yellow mosaic virus RNA.

H F Becker 1, Y Motorin 1, C Florentz 1, R Giegé 1, H Grosjean 1
PMCID: PMC147804  PMID: 9705510

Abstract

The last 82 nucleotides of the 6.3 kb genomic RNA of plant turnip yellow mosaic virus (TYMV), the so-called 'tRNA-like' domain, presents functional, structural and primary sequence homologies with canonical tRNAs. In particular, one of the stem-loops resembles the TPsi(pseudouridine)-branch of tRNA, except for the presence of a guanosine at position 37 (numbering is from the 3'-end) instead of the classical uridine-55 in tRNA (numbering is from the 5'-end). Both the wild-type TYMV-RNA fragment and a variant, TYMV-mut G37U in which G-37 has been replaced by U-37, have been tested as potential substrates for the yeast tRNA modification enzymes. Results indicate that two modified nucleotides were formed upon incubation of the wild-type TYMV-fragment in a yeast extract: one Psi which formed quantitatively at position 65, and one ribothymidine (T) which formed at low level at position U-38. In the TYMV-mutant G37U, besides the quantitative formation of both Psi-65 and T-38, an additional Psi was detected at position 37. Modified nucleotides Psi-65, T-38 and Psi-37 in TYMV RNA are equivalent to Psi-27, T-54 and Psi-55 in tRNA, respectively. Purified yeast recombinant tRNA:Psisynthases (Pus1 and Pus4), which catalyze respectively the formation of Psi-27 and Psi-55 in yeast tRNAs, are shown to catalyze the quantitative formation of Psi-65 and Psi-37, respectively, in the tRNA-like 3'-domain of mutant TYMV RNA in vitro . These results are discussed in relation to structural elements that are needed by the corresponding enzymes in order to catalyze these post-transcriptional modification reactions.

Full Text

The Full Text of this article is available as a PDF (130.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Tsang T. H., Buck M., Christman M. F. The leader mRNA of the histidine attenuator region resembles tRNAHis: possible general regulatory implications. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5240–5242. doi: 10.1073/pnas.80.17.5240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arluison V., Hountondji C., Robert B., Grosjean H. Transfer RNA-pseudouridine synthetase Pus1 of Saccharomyces cerevisiae contains one atom of zinc essential for its native conformation and tRNA recognition. Biochemistry. 1998 May 19;37(20):7268–7276. doi: 10.1021/bi972671o. [DOI] [PubMed] [Google Scholar]
  3. Auxilien S., Crain P. F., Trewyn R. W., Grosjean H. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. J Mol Biol. 1996 Oct 4;262(4):437–458. doi: 10.1006/jmbi.1996.0527. [DOI] [PubMed] [Google Scholar]
  4. Bakin A., Ofengand J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry. 1993 Sep 21;32(37):9754–9762. doi: 10.1021/bi00088a030. [DOI] [PubMed] [Google Scholar]
  5. Becker H. D., Giegé R., Kern D. Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Biochemistry. 1996 Jun 11;35(23):7447–7458. doi: 10.1021/bi9601058. [DOI] [PubMed] [Google Scholar]
  6. Becker H. F., Motorin Y., Planta R. J., Grosjean H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 1997 Nov 15;25(22):4493–4499. doi: 10.1093/nar/25.22.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Becker H. F., Motorin Y., Sissler M., Florentz C., Grosjean H. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. J Mol Biol. 1997 Dec 12;274(4):505–518. doi: 10.1006/jmbi.1997.1417. [DOI] [PubMed] [Google Scholar]
  8. Caprara M. G., Lehnert V., Lambowitz A. M., Westhof E. A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell. 1996 Dec 13;87(6):1135–1145. doi: 10.1016/s0092-8674(00)81807-3. [DOI] [PubMed] [Google Scholar]
  9. Dreher T. W., Florentz C., Giege R. Valylation of tRNA-like transcripts from cloned cDNA of turnip yellow mosaic virus RNA demonstrate that the L-shaped region at the 3' end of the viral RNA is not sufficient for optimal aminoacylation. Biochimie. 1988 Dec;70(12):1719–1727. doi: 10.1016/0300-9084(88)90030-2. [DOI] [PubMed] [Google Scholar]
  10. Dumas P., Moras D., Florentz C., Giegé R., Verlaan P., Van Belkum A., Pleij C. W. 3-D graphics modelling of the tRNA-like 3'-end of turnip yellow mosaic virus RNA: structural and functional implications. J Biomol Struct Dyn. 1987 Apr;4(5):707–728. doi: 10.1080/07391102.1987.10507674. [DOI] [PubMed] [Google Scholar]
  11. Edqvist J., Blomqvist K., Stråby K. B. Structural elements in yeast tRNAs required for homologous modification of guanosine-26 into dimethylguanosine-26 by the yeast Trm1 tRNA-modifying enzyme. Biochemistry. 1994 Aug 16;33(32):9546–9551. doi: 10.1021/bi00198a021. [DOI] [PubMed] [Google Scholar]
  12. Edqvist J., Stråby K. B., Grosjean H. Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: importance of the tRNA architecture. Biochimie. 1995;77(1-2):54–61. doi: 10.1016/0300-9084(96)88104-1. [DOI] [PubMed] [Google Scholar]
  13. Felden B., Hanawa K., Atkins J. F., Himeno H., Muto A., Gesteland R. F., McCloskey J. A., Crain P. F. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J. 1998 Jun 1;17(11):3188–3196. doi: 10.1093/emboj/17.11.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Felden B., Himeno H., Muto A., McCutcheon J. P., Atkins J. F., Gesteland R. F. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA. 1997 Jan;3(1):89–103. [PMC free article] [PubMed] [Google Scholar]
  15. Florentz C., Briand J. P., Romby P., Hirth L., Ebel J. P., Glegé R. The tRNA-like structure of turnip yellow mosaic virus RNA: structural organization of the last 159 nucleotides from the 3' OH terminus. EMBO J. 1982;1(2):269–276. doi: 10.1002/j.1460-2075.1982.tb01158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Florentz C., Giegé R. Contact areas of the turnip yellow mosaic virus tRNA-like structure interacting with yeast valyl-tRNA synthetase. J Mol Biol. 1986 Sep 5;191(1):117–130. doi: 10.1016/0022-2836(86)90427-4. [DOI] [PubMed] [Google Scholar]
  17. Florentz C., Mengual R., Briand J. P., Giegé R. Large-scale purification of the 3'-OH-terminal tRNA-like sequence (n = 159) of turnip-yellow-mosaic-virus RNA. Eur J Biochem. 1982 Mar;123(1):89–93. doi: 10.1111/j.1432-1033.1982.tb06502.x. [DOI] [PubMed] [Google Scholar]
  18. Graffe M., Dondon J., Caillet J., Romby P., Ehresmann C., Ehresmann B., Springer M. The specificity of translational control switched with transfer RNA identity rules. Science. 1992 Feb 21;255(5047):994–996. doi: 10.1126/science.1372129. [DOI] [PubMed] [Google Scholar]
  19. Grosjean H., Edqvist J., Stråby K. B., Giegé R. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol. 1996 Jan 12;255(1):67–85. doi: 10.1006/jmbi.1996.0007. [DOI] [PubMed] [Google Scholar]
  20. Grosjean H., Sprinzl M., Steinberg S. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie. 1995;77(1-2):139–141. doi: 10.1016/0300-9084(96)88117-x. [DOI] [PubMed] [Google Scholar]
  21. Grosjean H., Szweykowska-Kulinska Z., Motorin Y., Fasiolo F., Simos G. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie. 1997 May;79(5):293–302. doi: 10.1016/s0300-9084(97)83517-1. [DOI] [PubMed] [Google Scholar]
  22. Gu X. R., Santi D. V. The T-arm of tRNA is a substrate for tRNA (m5U54)-methyltransferase. Biochemistry. 1991 Mar 26;30(12):2999–3002. doi: 10.1021/bi00226a003. [DOI] [PubMed] [Google Scholar]
  23. Gu X., Ivanetich K. M., Santi D. V. Recognition of the T-arm of tRNA by tRNA (m5U54)-methyltransferase is not sequence specific. Biochemistry. 1996 Sep 10;35(36):11652–11659. doi: 10.1021/bi9612125. [DOI] [PubMed] [Google Scholar]
  24. Gu X., Ofengand J., Santi D. V. In vitro methylation of Escherichia coli 16S rRNA by tRNA (m5U54)-methyltransferase. Biochemistry. 1994 Mar 1;33(8):2255–2261. doi: 10.1021/bi00174a036. [DOI] [PubMed] [Google Scholar]
  25. Gu X., Yu M., Ivanetich K. M., Santi D. V. Molecular recognition of tRNA by tRNA pseudouridine 55 synthase. Biochemistry. 1998 Jan 6;37(1):339–343. doi: 10.1021/bi971590p. [DOI] [PubMed] [Google Scholar]
  26. Haenni A. L., Joshi S., Chapeville F. tRNA-like structures in the genomes of RNA viruses. Prog Nucleic Acid Res Mol Biol. 1982;27:85–104. doi: 10.1016/s0079-6603(08)60598-x. [DOI] [PubMed] [Google Scholar]
  27. Jiang H. Q., Motorin Y., Jin Y. X., Grosjean H. Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res. 1997 Jul 15;25(14):2694–2701. doi: 10.1093/nar/25.14.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Keith G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie. 1995;77(1-2):142–144. doi: 10.1016/0300-9084(96)88118-1. [DOI] [PubMed] [Google Scholar]
  29. Keith J. M., Winters E. M., Moss B. Purification and characterization of a HeLa cell transfer RNA(cytosine-5-)-methyltransferase. J Biol Chem. 1980 May 25;255(10):4636–4644. [PubMed] [Google Scholar]
  30. Kolk M. H., van der Graaf M., Wijmenga S. S., Pleij C. W., Heus H. A., Hilbers C. W. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science. 1998 Apr 17;280(5362):434–438. doi: 10.1126/science.280.5362.434. [DOI] [PubMed] [Google Scholar]
  31. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9223–9227. doi: 10.1073/pnas.91.20.9223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lesiewicz J., Dudock B. In vitro methylation of tobacco mosaic virus RNA with ribothymidine-forming tRNA methyltransferase. Characterization and specificity of the reaction. Biochim Biophys Acta. 1978 Sep 27;520(2):411–418. doi: 10.1016/0005-2787(78)90238-1. [DOI] [PubMed] [Google Scholar]
  33. Mans R. M., Pleij C. W., Bosch L. tRNA-like structures. Structure, function and evolutionary significance. Eur J Biochem. 1991 Oct 15;201(2):303–324. doi: 10.1111/j.1432-1033.1991.tb16288.x. [DOI] [PubMed] [Google Scholar]
  34. Marcu K., Dudock B. Methylation of TMV RNA. Biochem Biophys Res Commun. 1975 Feb 17;62(4):798–807. doi: 10.1016/0006-291x(75)90393-9. [DOI] [PubMed] [Google Scholar]
  35. Monroe S. S., Schlesinger S. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5' ends. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3279–3283. doi: 10.1073/pnas.80.11.3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Motorin Y., Keith G., Simon C., Foiret D., Simos G., Hurt E., Grosjean H. The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity. RNA. 1998 Jul;4(7):856–869. doi: 10.1017/s1355838298980396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Muto A., Ushida C., Himeno H. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem Sci. 1998 Jan;23(1):25–29. doi: 10.1016/s0968-0004(97)01159-6. [DOI] [PubMed] [Google Scholar]
  38. Rietveld K., Pleij C. W., Bosch L. Three-dimensional models of the tRNA-like 3' termini of some plant viral RNAs. EMBO J. 1983;2(7):1079–1085. doi: 10.1002/j.1460-2075.1983.tb01549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rietveld K., Van Poelgeest R., Pleij C. W., Van Boom J. H., Bosch L. The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res. 1982 Mar 25;10(6):1929–1946. doi: 10.1093/nar/10.6.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Romby P., Caillet J., Ebel C., Sacerdot C., Graffe M., Eyermann F., Brunel C., Moine H., Ehresmann C., Ehresmann B. The expression of E.coli threonyl-tRNA synthetase is regulated at the translational level by symmetrical operator-repressor interactions. EMBO J. 1996 Nov 1;15(21):5976–5987. [PMC free article] [PubMed] [Google Scholar]
  41. Romby P., Carbon P., Westhof E., Ehresmann C., Ebel J. P., Ehresmann B., Giegé R. Importance of conserved residues for the conformation of the T-loop in tRNAs. J Biomol Struct Dyn. 1987 Dec;5(3):669–687. doi: 10.1080/07391102.1987.10506419. [DOI] [PubMed] [Google Scholar]
  42. Sakamoto K., Okada N. 5-Methylcytidylic modification of in vitro transcript from the rat identifier sequence; evidence that the transcript forms a tRNA-like structure. Nucleic Acids Res. 1985 Oct 25;13(20):7195–7206. doi: 10.1093/nar/13.20.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sakamoto K., Okada N. Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes. J Mol Evol. 1985;22(2):134–140. doi: 10.1007/BF02101691. [DOI] [PubMed] [Google Scholar]
  44. Silberklang M., Prochiantz A., Haenni A. L., Rajbhandary U. L. Studies on the sequence of the 3'-terminal region of turnip-yellow-mosaic-virus RNA. Eur J Biochem. 1977 Feb;72(3):465–478. doi: 10.1111/j.1432-1033.1977.tb11270.x. [DOI] [PubMed] [Google Scholar]
  45. Simos G., Tekotte H., Grosjean H., Segref A., Sharma K., Tollervey D., Hurt E. C. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 1996 May 1;15(9):2270–2284. [PMC free article] [PubMed] [Google Scholar]
  46. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Szweykowska-Kulinska Z., Senger B., Keith G., Fasiolo F., Grosjean H. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile). EMBO J. 1994 Oct 3;13(19):4636–4644. doi: 10.1002/j.1460-2075.1994.tb06786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yao L. J., James T. L., Kealey J. T., Santi D. V., Schmitz U. The dynamic NMR structure of the T psi C-loop: implications for the specificity of tRNA methylation. J Biomol NMR. 1997 Apr;9(3):229–244. doi: 10.1023/a:1018618606857. [DOI] [PubMed] [Google Scholar]
  49. van Belkum A., Abrahams J. P., Pleij C. W., Bosch L. Five pseudoknots are present at the 204 nucleotides long 3' noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res. 1985 Nov 11;13(21):7673–7686. doi: 10.1093/nar/13.21.7673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES