Skip to main content
Public Health Reports logoLink to Public Health Reports
. 1987 Jul-Aug;102(4 Suppl):125–127.

Introductory remarks

Karen K Steinberg
PMCID: PMC1478055  PMID: 19313189

Abstract

The cause of osteoporosis, a condition in which bone mass is decreased to a point where structural failure may occur, is unknown; many factors that contribute to the development of osteoporosis are known.

Bone mass increases until the late twenties, the time when people attain peak bone mass. For a time after peak bone mass is reached, bone loss and formation are approximately equal. Soon after that, probably in the early thirties, an uncoupling of bone synthesis and bone resorption occurs, and a net loss of bone mass begins, a process that can ultimately result in osteoporosis.

Bone loss occurs most rapidly in white females immediately after menopause. The bone most affected is the spongy, trabecular bone of the vertebrae and pelvis and the ends of long bones.

Osteoporosis is classified into two syndromes, which are not distinct but have overlapping features and may have the same pathogenetic mechanism. Type I, or postmenopausal osteoporosis, is associated with estrogen deficiency and is characterized by loss of trabecular bone in the vertebrae and the distal radius (the wrist). Vertebral fractures and wrist fractures (also called Colles' fractures) result. Type II, or senile osteoporosis, is age-related, occurs in men as well as women, and is characterized by fractures of the hip and humerus. There is a loss of cortical as well as trabecular bone.

Estrogen deficiency, increasing age, smoking, high alcohol intake, large amounts of caffeine and protein, and lean body mass favor decreased bone density, whereas estrogen replacement after menopause, adequate dietary calcium, and moderate amounts of weight-bearing exercise tend to favor increased bone density.

Standard X-rays, computed tomography, single and dual photon absorptiometry, and neutron activation analysis are noninvasive techniques used in evaluating osteoporosis.

Calcium, estrogen, and calcitonin are approved drug therapies for osteoporosis.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Canalis E. Effect of growth factors on bone cell replication and differentiation. Clin Orthop Relat Res. 1985 Mar;(193):246–263. [PubMed] [Google Scholar]
  2. Centrella M., Canalis E. Local regulators of skeletal growth: a perspective. Endocr Rev. 1985 Fall;6(4):544–551. doi: 10.1210/edrv-6-4-544. [DOI] [PubMed] [Google Scholar]
  3. Christiansen C., Christensen M. S., Larsen N. E., Transbøl I. B. Pathophysiological mechanisms of estrogen effect on bone metabolism. Dose-response relationships in early postmenopausal women. J Clin Endocrinol Metab. 1982 Dec;55(6):1124–1130. doi: 10.1210/jcem-55-6-1124. [DOI] [PubMed] [Google Scholar]
  4. Cohn S. H., Abesamis C., Yasumura S., Aloia J. F., Zanzi I., Ellis K. J. Comparative skeletal mass and radial bone mineral content in black and white women. Metabolism. 1977 Feb;26(2):171–178. doi: 10.1016/0026-0495(77)90052-x. [DOI] [PubMed] [Google Scholar]
  5. Cummings S. R., Black D. Should perimenopausal women be screened for osteoporosis? Ann Intern Med. 1986 Jun;104(6):817–823. doi: 10.7326/0003-4819-104-6-817. [DOI] [PubMed] [Google Scholar]
  6. Daniell H. W. Osteoporosis of the slender smoker. Vertebral compression fractures and loss of metacarpal cortex in relation to postmenopausal cigarette smoking and lack of obesity. Arch Intern Med. 1976 Mar;136(3):298–304. doi: 10.1001/archinte.136.3.298. [DOI] [PubMed] [Google Scholar]
  7. Drinkwater B. L., Nilson K., Chesnut C. H., 3rd, Bremner W. J., Shainholtz S., Southworth M. B. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984 Aug 2;311(5):277–281. doi: 10.1056/NEJM198408023110501. [DOI] [PubMed] [Google Scholar]
  8. Horsman A., Jones M., Francis R., Nordin C. The effect of estrogen dose on postmenopausal bone loss. N Engl J Med. 1983 Dec 8;309(23):1405–1407. doi: 10.1056/NEJM198312083092301. [DOI] [PubMed] [Google Scholar]
  9. Jensen J., Christiansen C., Rødbro P. Cigarette smoking, serum estrogens, and bone loss during hormone-replacement therapy early after menopause. N Engl J Med. 1985 Oct 17;313(16):973–975. doi: 10.1056/NEJM198510173131602. [DOI] [PubMed] [Google Scholar]
  10. Krølner B., Toft B., Pors Nielsen S., Tøndevold E. Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci (Lond) 1983 May;64(5):541–546. doi: 10.1042/cs0640541. [DOI] [PubMed] [Google Scholar]
  11. Nilas L., Christiansen C., Rødbro P. Calcium supplementation and postmenopausal bone loss. Br Med J (Clin Res Ed) 1984 Oct 27;289(6452):1103–1106. doi: 10.1136/bmj.289.6452.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nordin B. E., Heyburn P. J., Peacock M., Horsman A., Aaron J., Marshall D., Crilly R. G. Osteoporosis and osteomalacia. Clin Endocrinol Metab. 1980 Mar;9(1):177–205. doi: 10.1016/s0300-595x(80)80026-0. [DOI] [PubMed] [Google Scholar]
  13. Nordin B. E., Horsman A., Crilly R. G., Marshall D. H., Simpson M. Treatment of spinal osteoporosis in postmenopausal women. Br Med J. 1980 Feb 16;280(6212):451–454. doi: 10.1136/bmj.280.6212.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Recker R. R., Saville P. D., Heaney R. P. Effect of estrogens and calcium carbonate on bone loss in postmenopausal women. Ann Intern Med. 1977 Dec;87(6):649–655. doi: 10.7326/0003-4819-87-6-649. [DOI] [PubMed] [Google Scholar]
  15. Riggs B. L., Melton L. J., 3rd Evidence for two distinct syndromes of involutional osteoporosis. Am J Med. 1983 Dec;75(6):899–901. doi: 10.1016/0002-9343(83)90860-4. [DOI] [PubMed] [Google Scholar]
  16. Riggs B. L., Melton L. J., 3rd Involutional osteoporosis. N Engl J Med. 1986 Jun 26;314(26):1676–1686. doi: 10.1056/NEJM198606263142605. [DOI] [PubMed] [Google Scholar]
  17. Smith E. L., Jr, Reddan W., Smith P. E. Physical activity and calcium modalities for bone mineral increase in aged women. Med Sci Sports Exerc. 1981;13(1):60–64. [PubMed] [Google Scholar]
  18. Wahner H. W., Dunn W. L., Riggs B. L. Noninvasive bone mineral measurements. Semin Nucl Med. 1983 Jul;13(3):282–289. doi: 10.1016/s0001-2998(83)80021-x. [DOI] [PubMed] [Google Scholar]
  19. Weiss N. S., Ure C. L., Ballard J. H., Williams A. R., Daling J. R. Decreased risk of fractures of the hip and lower forearm with postmenopausal use of estrogen. N Engl J Med. 1980 Nov 20;303(21):1195–1198. doi: 10.1056/NEJM198011203032102. [DOI] [PubMed] [Google Scholar]
  20. Yano K., Wasnich R. D., Vogel J. M., Heilbrun L. K. Bone mineral measurements among middle-aged and elderly Japanese residents in Hawaii. Am J Epidemiol. 1984 May;119(5):751–764. doi: 10.1093/oxfordjournals.aje.a113796. [DOI] [PubMed] [Google Scholar]

Articles from Public Health Reports are provided here courtesy of SAGE Publications

RESOURCES